Volume 30 | Number 2 | Year 2016 | Article Id. IJMTT-V30P520 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P520
In a trans-Sasakian manifold with R.̃S̃ =0, the Ricci tensors admitting semi-symmetric non-metric connection and admitting Levi-civita connection has been found. It has been proved that a β - Kenmotsu manifold admitting semi-symmetric non-metric connection satisfying R.̃S̃ =0 is an Einstein manifold with constant negative scalar curvature-2n(2n+1)β2.
[1] N. S. Agashe and M. R. Chafle, A Semi-Symmetric Non-Metric Connection, Indian J. Pure Math., 23(1992) 399-409.
[2] S. C. Biswas and U. C. De, On A Type Of Semi-Symmetric Non-Metric Connection On A Riemannian Manifold, Ganita, 48 (1997) 91-94.
[3] D. E Blair, Contact Manifolds In Riemannian Geometry, Lecture Notes In Math. 509, Springer Verlag (1976).
[4] D. E Blair, Riemannian geometry of Contact and Symplectic manifolds, Birkhauser Boston (2002).
[5] U. C. De and D. Kamilya, Hypersurfaces Of A Riemannian Manifold With Semi-Symmetric Non-Metric Connection, J. Indian Inst. Sci. 75 (1995) 707-710.
[6] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian Manifolds, Kyungpook Math. J., 2 (2005) 247-255.
[7] U. C. De and A. A. Shaikh, Differential Geometry of manifolds, Narosa Publishing House (2007).
[8] U. C. De and A. A. Shaikh, Complex manifolds and contact manifolds, Narosa Publishing House, (2009).
[9] Kim Jeong-Sik, R. Prasad, and M. M. Tripathi, On generalized Ricci recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39(6)(2002) 953-961.
[10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972) 93-103.
[11] J. A. Oubin˜a, New Classes of almost contact metric structures, Pub. Math. Debrecen 32(1985) 187-193.
[12] R. Prasad, Pankaj, M. M. Tripathi, and S. S. Shukla, On some special type of trans-Sasakian Manifolds, Rev. Mat. Univ. Parma, 8(2009) 1-17.
[13] R. Prasad, and Pankaj., Some curvature tensors on a trans-Sasakian Manifold with respect to semi-symmetric non-metric connections, J. Nat. Acad. Math., Sp. (2009) 55-64.
[14] S. Sasaki, On differentiable manifolds with certain structure which are closed related to an almost contact structure, Tohoku Math. Journal. 12 (1960) 459-476.
[15] R. N. Singh, M. K. Pandey, Some properties of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Cal. Math.Soc., 98-5 (1997) 443-454.
[16] K. Yano, Integral Formulas in Riemannian geometry”, Pure and Applied Mathematics, No. 1 Marcel Dekker, Inc., New York, (1970).
Abhishek Singh, "A Study of Trans-Sasakian Manifold Admitting Semi-Symmetric Non-Metric Connection With R.̃S̃=0," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 2, pp. 109-114, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P520