Volume 31 | Number 2 | Year 2016 | Article Id. IJMTT-V31P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V31P517
Soumendra Goala, Palash Dutta, "A study on fuzzy multi-criteria decision making in gunshot analysis," International Journal of Mathematics Trends and Technology (IJMTT), vol. 31, no. 2, pp. 89-94, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V31P517
[1] Bellman, R. Zadeh, L.A. (1970). Decision-making in a fuzzy environment. Management Science.
[2] Bevel, T., Gardner, R.M. (2002). Bloodstain Pattern Analysis. CRC, Boca Raton, FL, 159–192.
[3] Camana, F., ―Determining the area of convergence in Bloodstain Pattern Analysis: a probabilistic approach, Interregional forensic sciene office (G.I.P.S.), Piazzetta Palatucci, 5 – 35123, Padova (ITALY), 2013.
[4] Carter, A.L.(2001). The directional analysis of bloodstain patterns theory and experimental validation. Journal of the Canadian Society of Forensic Science. 34. 173–189.
[5] Carter, A.L., Illes, M., Maloney, K.(2005). Further validation of the BackTrackTM computer programe for bloodstain pattern analysis—precision and accuracy. IABPA Newslett.15–22,. http://www.iabpa.org/newslett.htm.
[6] Chafe, F.C.( 2003). Determination of Impact angle using mathematical properties of ellipse. International association of Bloodstain Pattern analysts News. 19(1). 5-9.
[7] Chenuyan K., Chi L. and Fredrick S.(1993). An expert system on Crime Investigation Based on Mark- Theory to Reconstruct Crime Scene. Pan Pacific Conference on Information System.
[8] DiMaio, J. M.V.(1999). Practical Aspects of Firearms, Ballistics and Forensic Techniques. 2nd edition, CRC Press, Boca Raton, New York,.
[9] Hwang, C.L. Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Application. Springer, New York.
[10] International Association of Bloodstain Pattern Analysts (IABPA) (http://iabpa.org/)
[11] James, H.S. and Eckert, G.W. (1999). Interpretation of Bloodstain Evidence at Crime Scenes. New York, 2nd edition, CRC Press, Boca Raton.
[12] James, S.H. (1999). Scientific and Legal Applications of Bloodstain Pattern Interpretation. CRC, Boca Raton, FL, New York.
[13] James, S.H. Kish, P.E. & Sutton, T.P. ( 2005). Principles of Bloodstain Pattern Analysis: Theory and Practice. CRC Taylor & Francis, Boca Raton, FL, 226–234.
[14] Klir, J.G. & Yuan, B. (2009). Fuzzy Sets and Fuzzy Logic. Pearson Education, 399-401.
[15] Opricovic, S., and Tzeng, G.H. (2004). ―Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156( 2).445–455.
[16] Pace, A. ( 2005) . The Relationship between Errors in Ellipse Fitting and the Increasing Degree of Error in Angle of Impact Calculations," International Association of Bloodstain Pattern Analysts News, 21( 3),12-14.
[17] Pace, A., Carter, A.L., Moor,e C. & Yamashita, B.(2006). Another treatment of three-dimensional bloodstain pattern analysis, IABPA Newslett. 4–11,. http://www.iabpa.org/newslett.htm.
[18] Reynolds, M., D. Franklin, Raymond, M. A. & Dadour, I. ( 2008). Bloodstain measurement using computer-fitted theoretical ellipses: A study in accuracy and precision." Journal of Forensic Identification, 58(4), 469-484.
[19] Saaty, T.L. ( 1980). The Analytic Hierarchy Process, McGraw- Hill, New York.
[20] Taroni, F., Bozza, S. & Aitken, (2005). Decision analysis in forensic science. Journal of Forensic Sciences. 50(4), 894–905.
[21] Willis,C., Piranian, A. K., Donaggio, J. R., Barnett, R. J. & Rowe, W. F. (2001). Errors in the Estimation of the Distance of fall and Angles of Impact Blood Drops. Forensic Science International. 123(1), 1-4.
[22] Zadeh, L.A.( 1965) . Fuzzy sets, Information and Control. 8(3), 338–353.
[23] Zimmermann, H.J. (1985) ―Fuzzy Set Theory and Its Applications. Dordrecht, Boston.