Volume 31 | Number 3 | Year 2016 | Article Id. IJMTT-V31P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V31P522
The object of present document is to derive an integral pertaining to a products of two multivariable Aleph-functions, Two general class of polynomials and the M-serie with general arguments of quadratic nature. The result established in this paper are of general nature and hence encompass several particular cases.
[1] Saxena R.K. An integral involving G-function, Proc Nat. Inst. Sci. India. 26A (1960), page661-664
[2] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1994 vol 20,no2, p 113- 116.
[3] Sharma K. On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences , Vol 3 , issue1 ( 2014 ) , page1-13.
[4] Sharma M. Fractional integration and fractional differentiation of the M-series, Fractional calculus appl. Anal. Vol11(2), 2008, p.188-191.
[5] Srivastava H.M., A contour integral involving Fox's H-function. Indian J.Math. 14(1972), page1-6.
[6] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[7] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457.
[8] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[9] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[10] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.
Frédéric Ayant, "An integral associated with Aleph-functions of several variables," International Journal of Mathematics Trends and Technology (IJMTT), vol. 31, no. 3, pp. 142-154, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V31P522