Volume 32 | Number 1 | Year 2016 | Article Id. IJMTT-V32P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V32P502
In this paper, we used the sub-equation method for solving the nonlinear complex fractional Schrödinger equation, the nonlinear complex fractional Kundu-Eckhaus, and nonlinear complex fractional generalized-Zakharov equations in the sense oftheJumarie's modified Riemann-Liouvillederivative. Whit the aid of the mathematical software Maple, some exact solutions for these equations are successfully.
[1] O. Abu-Haija, A.A. Mahasneh, Ali Taani and A-W. Ajlouni. Particle in finite potential well, with dissipation, J. Applied sci. 7 (2007):1669-1673.
[2] Wang. Homotopy perturbation method for fractional Kdv equation. Applied Math. Comput. 190: (2007) 1795-1802.
[3] Zhang S and Zhang H Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs, phys. Lett. A (2011) 375-1069.
[4]B.Tang, Y. He, L. Wei, X. Zhang. August 2012. A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Applied Math. Comput. Volume 376, Issues 38–39 (2012) 6 Pages 2588–2590.
[5] S.Guo, L. Mei, Y. Li, Y. Sun. 9 January. The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics. Applied Math. Comput. Volume 376, Issue 4 (2012) Pages 407–411.
[6] A. Bekirand O. Guner. Exact solutions of nonlinear fractional differential equations by ( )-expansion method. Chin. Phys. B Vol. 22 (2013) No. 11 110202
[7] Z. Bin. (G'/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics. Communications in Theoretical Physics.Volume 58 (2012) Number 5.
[8] Khaled A. Gepreel and Saleh Omran. Exact solutions for nonlinear partial fractional differential equations.Chinese Physics B, Volume 21 (2012) Number 11.
[9] M. M. El-Borai, W. G. El-sayed, R. M. Al-Masroub. Exact solutions for time fractional coupled whitham-broer-kaup equations via exp-function method. Volume: 02 Issue: 06 | Sep- 2015.
[10] E. Misirli and Y.Gurefe. Exp-function method for solving nonlinear evolution Equations.Mathematical and Computational Applications, Vol. 16, No. 1 (2011) pp. 258-266.
[11] X. Wei Zhou. Exp-function method for solving Fisher’s equation. Journal of Physics: Conference Series. (2008) 96 012063.
[12] Bin Zheng. Exp-function method for solving fractional partial differential equations. The Scientific World Journal. Volume (2013) Article ID 465723, 8 pages.
[13] A. M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd- Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Soliton Fractal, 25(2005), 55–63.
[14] A. M. Wazwaz, The extended tanh method for new soliton solutions for many forms of the fifth-order KdV equations, Appli. Math.Comput. 184(2007), 1002–1014.
[15] M. M. El-Borai, W. G. El-Sayed, A. M. Jawad. Adomian Decomposition Method for solving Fractional Differential Equations. (IRJET)Volume: 02 Issue: 06 | Sep-2015
[16] M. M. El-Borai, A. A. Zaghrout and A. L. Elshaer, Exact solutions for nonlinear partial differential equations by usingcosine-function method, International Journal of Research andReviews in Applied Sciences, Vol9 Issue3 December 2011-12-17
[17] M. M. El-Borai, A. A. Zaghrout and A. L. Elshaer, Exact solutions for nonlinear partial differential equations by usingthe extended multiple Riccati equations expansion method, International Journal of Research and Reviews in Applied Sciences, Vol9 Issue3 December 2011-12-17.
[18] Z. Yun zhang1, j. Zhong1, s. Sha dou1, j. Liu1, d. Peng1, t. Gao1.First integral method and exact solutions to nonlinear Partial differential equations arising in mathematical Physics. (Romanian6Reports.in)Phys5ics, Vol. 65, No.4 (2013) P. 1155–1169,
[19] G. Jamari. Modified Riemann-Liouvile derivative and fractional Taylor series of non-differentiable functions. Further results. Math. Compute. Appl. (2006), pp1367- 1376.
[20] G. Jumarie. The Leibniz Rule for Fractional Derivatives Holds with Non-Differentiable Functions, Mathematics and Statistics 1(2): 50-52, (2013)
[21] G. Jamari, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Applications to fractional Black-Scholes equations, Mathematics and Economics 42 (2008) 271- 287.
[22] M. M.El-Borai, W. G. Elsayed., R. M. Al-Masroub. Exact solutions for some nonlinear fractional parabolic equations. Vol. No. 10, Issue No. III,(2015)p-ISSN: 2454-1796.
[23] A. Bekir, E Aksoy and A. C. Cevikel. Exact solution of nonlinear time fractional partial differential equations by sub-equation method. Meth. Appl. Sci. (2014)
[24] N. Taghizadeh, M. Mirzazadeh, M. Eslami, M. Moradi. Exact travelling wave solutions for some complex nonlinear partial differential equations. Vol. 2, No. 1, 2014, pp. 11-18
[25] B. Li, Y. Chen, and H.Zhang Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgers-type equations with nonlinear terms of any order. J. Phys. A: Math. Gen. 35 (2002) 8253-8265.
[26] Ya-zhou Li, Kai-ming Li, Chang Lin. Exp-function method for solving the generalized-Zakharov equations. Applied Mathematics and Computation 205 (2008) 197–201.
[27] M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type, J. of Appl. Math. Stochastic Analysis (JAMSA) 2004, 199-211.
[28] M. M. El-Borai, K. El-Said El-Nadi, O. Labib, M.Hamdy, Volterra equations with fractional stochastic integrals, Mathematical problems in Engineering, 5, (2004), 453-468.
[29] M. M. El-Borai, K. El-Said, O. Labib, and M.Hamdy, Numerical methods for some nonlinear stochastic differential equations ,Applied math, and comp, 168, 2005, 65-75
[30] Mahmoud M. El-Borai, On some fractional evolution equations with non-local conditions, International J. of Pure and Applied Mathematics, vol. 24, No. 3, 2005,
[31] Mahmoud M. El-Borai, on some fractional differential equations in the Hilbert space, Journal of Discrete and Continuous Dynamical Systems, Series A, 2005, 233-241.
[32] M. M. El-Borai, K. El-Said El-Nadi and I. G.El-Akabawi, On some integro- differential equations of fractional orders, The International J. of Contemporary Mathematics ,Vol. 1,2006, No. 15, 719-726.
[33] M. M. El-Borai, M. I. Abbas, On some integro-differential equations of fractional orders involving Caratheodory nonlinearities, International J. of Modern Mathematics, 2(1) (2007), 41-52.
[34] W. El-Sayed and J. Banach, Measures of non-compactness and solvability of an integral equation in the class of functions of locally bounded variation, J.Math. Anal.Appl.167 (1992),133-151.
[35] W. El-Sayed and E.M.El-Abd, Monotonic solutions for nonlinear functional integral equations of convolution type, Journal of Fixed Point Theory and Applications (JP) Vol.7, No.2, 2012, (101-111).
[36] W. El-Sayed, A note on a fixed point property for metric projections, Tamk. J. Math., Tamk. Univ., China, Vol. 27, No. 1, Spring (1996). 405-413.
[37] M. M.El-Borai, M. Abdallah and M. Kojok, Toepletz matrix method and nonlinear integral equations of Hammerstein type, Journal of Computational and Applied Mathematics, 223 (2009) 765-776.
[38] M. M. El-Borai, On the solvability of an inverse fractional abstract Cauchy problem, International Journal of Research and Reviews in Applied Sciences, Vol.4, No.4, September(2010) 411-416.
[39] W.El-Sayed, M. M. El-Borai, E. HamdAllah, and A.El- Shorbagy, On some partial differential equations with operator coefficients and non-local conditions, life Science J. 2013;10 (4), (3333-3336).
[40] W.El-Sayed, Mahmoud M. El-Borai and AmanyM.Moter, Continuous Solutions of a Quadratic Integral Equation, Inter.J.Life Science and Math.(IJLSM),Vol.2(5)-4,(2015), 21-30.
[41] K. El-Said El-Nadi, Wagdy G. El-Sayed and Ahmed Khdher Qassem, On Some Dynamical Systems of Controlling Tumor Growth, (IJASM) 2015,September,Volume 2, Issue 5, ISSN (Online): 2394-2894.
[42] K. El-Said El-Nadi, Wagdy G. El-Sayed and Ahmed Khdher Qassem, Mathematical model of brain tumor, (IRJET), Volume: 02 Issue: 05 | Aug-2015.
Mahmoud M.El-Borai, Wagdy G. El-sayed. Ragab M. Al-Masroub, "Exact Solutions Of Some Nonlinear complex fractional Partial Differential Equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 32, no. 1, pp. 4-9, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V32P502