Volume 32 | Number 1 | Year 2016 | Article Id. IJMTT-V32P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V32P504
In this document, we established three general integrals and employ exponential Fourier series involving the multivariable Aleph-function and the generalized Lauricella function
[1] Bajpai S.D. Some expansion formulae for Fox'H-function involving exponential functions. Proc.Camb.Philos.Soc. 67, p87-92 (1970).
[2] Churchill R.V. Fourier series and boundary value problems. Mc Graw-Hill, New York (1961).
[3] Macrobert T.M. Function of a complex variable. Macmillan, London (1966).
[4] Sharma C.K and Ahmad S.S.: On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19, p 113-116
[5]Sharma C.K. and Mishra G.K. Exponential Fourier series for the multivariable I-function. Acta. Ciencia. Indica. Math. 21,no.4, 1995, p 495-501.
[6] Srivastava H.M. And Panda R. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24, (1975), p 119-137.
[7] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457. Personal adress : 411 Avenue Joseph Raynaud Le parc
F.Y. Ayant, "Exponentiel Fourier series for the multivariable Aleph-function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 32, no. 1, pp. 17-23, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V32P504