Volume 32 | Number 1 | Year 2016 | Article Id. IJMTT-V32P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V32P505
In this document, we derive two general fractional derivative formulae involving the generalized Lauricella function, the general polynomials and the multivariable Aleph-function have been derivative by using the concept of fractional derivatives in the theory of hypergeometric function
[1] Anil Goyal and R.D. Agrawal : Integral involving the product of I-function of two variables. Journal of M.A.C.T. 1995 ,vol.28 , page 147-155.
[2] Anil Goyal and R.D. Agrawal : Integration of I_function of two variables with respect to parameters. Jnanabha 1995 , vol.25 , page 87-91.
[3] Anil Goyal and R.D. Agrawal : on integration with respect to their parameters. Journal of M.A.C.T. 1995 , vol.29 page177-185.
[4] G. Lauricella. Sulle funyini ipergeometriche a piu variabili. Rend. Circ. Mat. Palermo vol 7, (1893), p111-158
[5] K.B. Oldham and J. Spanier : The fractional calculus. Academic Press , New York 1974.
[6] C.K. Sharma and S.S.Ahmad : On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19, p 113-116
[7] K. Sharma , On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences , Vol 3 , issue1 ( 2014 ) , page 1-13.
[8] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[9] H.M. Srivastava , K.C. Gupta , S.P. Goyal : The H-function of one and two variables with applications. South Asian Publishers , NewDelhi.
[10] H.M. Srivastava, H.L. Manocha : A treatise of generating function. Ellis Horwood Series, London (1984)
[11] D.K. Tiwari. Fractional derivatives the Lauricella function, the generalized polynomials and the multivariable Ifunction. Acta.Ciencia.indica.Math. Vol 23 (1997), p 303-306.
F.Y. Ayant, "Exponentiel Fourier series for the multivariable Aleph-functioFractional derivative formulae involving the generalized Lauricella function, the generalized polynomials and the multivariable Aleph-function II," International Journal of Mathematics Trends and Technology (IJMTT), vol. 32, no. 1, pp. 24-31, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V32P505