Volume 32 | Number 1 | Year 2016 | Article Id. IJMTT-V32P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V32P506
In this document, we shall establish three bilateral generating functions for a certain multiples sequences of function of several complex variables involving the multivariable Aleph-function and the generalized Lauricella function. These bilateral generating functions are derivable by using the consequences of Gould's identity ([1],1961) and Lagrange's expansion formula [2, Polya and Szego , 1972, p.348].
[1] H.W. Gould. A serie transformation for finding convolution identities, Duke Math. J. vol (28) 1961, p196 (eq 6.1)
[2] G. Polia and G.Szego (1972). Problems and theorems in analysis, vol.1. Springer. Verlag, New York, Heidlberg and Berlin; p. 348 ( Problems no 212 and 216).
[3] C.K. Sharma and S.S.Ahmad. On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19 , page 113- 116
[4] C.K. Sharma and D.K. Tiwari. Bilateral generating functions for systems in several variables. Bull. Of Pure and Applied sciences Vol.13E(no.2) 1994, p.111-114
[5] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24, (1975), p 119-137.
[6] H.M.Srivastava and M.C.Daoust. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser. A72 = Indag. Math, 31, (1969), p 449-457.
F.Y. Ayant, "Bilateral generating functions for systems in several variables and multivariable Aleph-function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 32, no. 1, pp. 32-37, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V32P506