Stability of n-type Cubic Functional Equation in
Non- Archimedean Normed space: using direct and
fixed point methods

V. Govindan S. Murthy, M. Arunkumar "Stability of n-type Cubic Functional Equation in
Non- Archimedean Normed space: using direct and
fixed point methods", *International Journal of Mathematics Trends and Technology (IJMTT). *V32(2):87-96 April 2016. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

**Abstract**

In this paper, the authors established the
Stability for n- type of Cubic functional equation of
the form in Non-Archimedean Normed spaces,using direct
and fixed point methods ,where n is a positive
integer with n>0.

**References**

[1] J.Aczel and J.Dhombres, Functtional Equation in several
variables, Combridge univ, press,1989.

[2] T.Aoki, on the stability of the linear transformation in
banach spaces, J.Math. soc. Japan, 2(1950), 64-66.

[3] L.M.Arriola and W.Bayer,the sability of the Cauchy
functional equation over p-adic fields,Real Analysis
exchange.31(2005/2006),125-132

[4] C. Baak, D. Boo, Th.M.
Rassias, Generalized additive mapping in Banach modules and
isomorphism between C*-algebras, J. Math. Anal. Appl. 314,
(2006), 150-161.

[5]. T.Bag,S.K.Samanta, finite dimensional fuzzy normed
linear spaces, J .Fuzzy Math, 11(3) (2003) 687-705.

[6]. T.Bag , S.K.samanta fuzzy bounded linear operations,fuzzy
sets and systems, 151 (2005) 513-547.

[7]. C.Borelli, G.L.Forti, on a general Hpers-ulam satability ,
internal J.Math Sci, 18(1995),229-236.

[8].P.W.Cholewa, Remarks on the stability of funcitional
equation, Aequationes math ,27 (1984),76-86.

[9].S.Czerwik, on the stability of the quadratic mapping in
normed spaces Abh.Math.sem.univ Hambury,62 (1992),59-64.

[10]. S.Czerwik, functional equation and inequalities in several
variables , World scientific, River Edge, NJ,2002.

[11]. P.Gavruta, A generation of the hypers Ulam-Rassias
stability of approximately additive mapping, J.Ma th. Anal.
Appl. 184, (1994), 431-436.

[12].D.H.Hypers, on the stability of the linear functional
equation, proc.nat.Sci.U.S.A., 27 (1941) 222-224.

[13]. D.H.Hypers, G.Isac, Th.M.Rassias, satbility of the
functional equation in several variables, Birkhauser , Basel
,1998

[14]. K.W.Jun ,H.M.Kim on satbility of an n-dimensional
quadratic and additive tpye functional equation, Math.
Ineq.appl. 9(1) (2006),153-165.

[15].S.M.Jung, on the Hypers-Ulam stability of funcitional
equation that have the quratic property J.Math anal. Appl,
222(1998), 126-137.

[16].S.M.Jung, on the Hypers-Ulam-Rassias stability of
funcitional equation in Mathematical analysis , Hadronic press,
plam Harbor, 2001

[17].PI.Kannappan, quadratic functional Equation inner
product spaces, results Math ,27, No 3-4,(1995), 368-372.

[18]. PI.Kannappan, Functional Equations and inequalities
with application ,Springer monographs in mathematics, 2009.

[19]. M.S.Moslehian and Th.M.Rassias,stability of functional
equations in non-Archimedean spaces,applicable Analysis and
Discrete Mathematics,1(2007),325-334.

[20] .C.Park,Generlized quadratic mappings in several
variables.Nonlinear .Anal.TMA.57(2004),713-722.

[21]. C.Park,Generlized quadratic mappings in Banach modules
.J.Math.Anal.Appl.62(2005),no.4,643-654.

[22].J.H.Park, intutionistic fuzzy metric spaces, chaos,solitons
and Fractols, 22(2004),1039-1046.

[23].J.M.Rassias ,on approximately linear mappings by linear
mapping , J.Funct. Anal, 46, (1982) 126-130.

[24].J.M.Rassias, on approximately of approximately linear
mapping by Linear mappings Bull. Sc.Math , 108, (1984), 445-
446.

[25].Th.M.Rassias , on the stability of the linear mapping in
babach spaces Proc.Amer.Math.soc, 72(1978),297-300.

[26].Th.M.Rassias, on the stability of the functional equation
in banach spaces J.Math .Anal.Appl.251,(2000),254-284.

[27].Th.M.Rassias,functional equations , inequalities and
Applications, Kluwer Acedamic publishers, Dordrecht, Bosan
London,2003.

[28].K.Ravi, M.Arunkumar and J.M.Rassias, on the ulam
stability for orthogonally general Euler-lagrange type functional
equation, international journal of mathematical sciences,
Autumn 2008 vol 3, no 08,36-47.

[29].K.Ravi, M.Arunkumar and P.Narasimman,fuzzy stability
of a additive functional equation, international Journal of
mathematical Sciences, vol 9, No All , Autumn 2011, 88-105.

[30].S.M.Ulam, problems in modern Mathematics, science
Editions, Wiley, Newyork, 1964(chapter VI, some questions in
analysis 1,stability).

[31] S.M.Ulam,A Collection of Mathematical
problems,Interscience Tracts Purre and Apllied
Mathematics,Interscience publisher,Newyork,1960.

[32] V.S.Vladimirov,I.V.Volovich and E.I.Zelenov,p-adic
Analysis and Mathematical Physics.World scientific.1994.

**Keywords**

Cubic functional
equation,Non-Archimedean noemed space,direct
and fixed point Stability.