Volume 33 | Number 1 | Year 2016 | Article Id. IJMTT-V33P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V33P510
We have established a new expansion formula for the multivariable Aleph-function in terms of product of the multivariable Aleph-function and the generalized Legendre's function due to Meulenbeld [2]. Some special cases are given in the last.
[1] Carslaw, H.S.; Introduction to the Theory of Fourier’s Series and Integrals, Dover Publication Inc., New York (1950).
[2] Meulendbeld, B.; Generalized Legendre’s associated functions for real values of the argument numerically less than unity, Nederl. Akad. Wetensch Proc. Ser. A61 (1958), page 557-563.
[3] Meulendbeld, B. and Robin, L.; Nouveaux resultats aux functions de Legendre’s generalisees, Nederl. Akad. Wetensch. Proc. Ser. A 64(1961), page 333-347
[4] Saxena, R.K. and Ramawat, A.; An expansion formula for the multivariable H-function invoving generalized Legendre’s associated function, Jnanabha, vol. 22(1992), 157-164.
[5] Sharma C.K. and Ahmad S.S. : On the multivariable I-function. Acta ciencia Indica Math , 1992 vol 19
[6] Srivastava, H.M., Gupta, K.C. and Goyal, S.P.; The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras (1982).
F.Y. Ayant, "On an expansion formula for the multivariable aleph-function involving generalized Legendre's associated function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 33, no. 1, pp. 67-73, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V33P510