Volume 33 | Number 2 | Year 2016 | Article Id. IJMTT-V33P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V33P517
M.S. Biradar, "Eulerianity of Some Graph Valued Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 33, no. 2, pp. 127-129, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V33P517
[1] G. Chartrand, On hamiltonian line graphs, Trans. Amer. Math. Soc. 134 (1968) 559- 566.
[2] T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math. 14 (1976) 247-255.
[3] F.Harary, Graph Theory, Addison Wesley, Reading Mass. (1969).
[4] V.R. Kulli and M.S. Biradar, The line splitting graph of a graph. Acta Ciencia Indica, Vol. XXVIII M, No. 3, 435 (2002).
[5] V.R. Kulli and M.S. Biradar, The middle blict graph of a graph, International Research Journal of Pure Algebra 5(7), 111-117 (2015).
[6] V.R.Kulli, On full graphs, J. Comp. & Math. Sci, vol.(6), 261-267, 5, pp261-267, (2015).
[7] V.R. Kulli and M.S. Biradar, On eulerian blict graphs and blitact graphs, Journal of Computer and Mathematical Sciences, 6(12), 712-717 (2015).
[8] M.S.Biradar and V.R.Kulli, On k-minimally nonouterplanarity of line graphs, Annals of Pure and Applied Mathematics, Vol. 11, No. 2, 73-77 (2016).
[9] M.S.Biradar and V.R.Kulli, Results on labeled path and its iterated line graphs, Intern. J. Fuzzy Mathematical Archive, Vol. 10, No. 2, 125-129 (2016).
[10] V.R. Kulli and M.S. Biradar, The point block graph of a graph, Journal of Computer and Mathematical Sciences, 5 (5), 476-481 (2014).
[11] V.R. Kulli and M.S. Biradar, Planarity of the point block graph of a graph, Ultra Scientist, 18, 609-611 (2006).
[12] V.R. Kulli and M.S. Biradar, The point block graphs and crossing numbers, Acta Ciencia Indica, 33(2), 637-640 (2007).
[13] V.R. Kulli and M.S. Biradar, The blict graph and blitact graph of a graph, Journal of Discrete Mathematical Sciences & Cryptography, No. 2- 3, pp. 151-162 Vol. 4 (2001).
[14] M.S.Biradar and S.S.Hiremath, The total blitact graph of a graph, Intern. J. Mathematical Archive 7 (5), pp 1-6, (2016).
[15] M.S.Biradr, S.S. Hiremath and V.R.Kulli, Middle blict graph and total blitact graph of a graph, National Symposium on Recent Advances in Applied Mathematics held at Dept. of Mathematics, Gulbarga University, Gulbarga (2010)
[16] V.R. Kulli, The semitotal block graph and totalblock graph of a graph of a graph, Indian J. Pure Appl. Math., 7, 625-630 (1976).
[17] V.R. Kulli, On the plick graph and the qlick graph of a graph, Research Journal, 1, 48-52 (1988).
[18]V.R. Kulli and D.G.Akka, On semientire graphs, J. Math. and Phy. Sci, 15, 585-589 (1981).
[19] V.R. Kulli and B. Basavanagoud, On the quasivertex total graph of a graph, J. Karnatak University Sci., 42, 1-7 (1998).
[20] V.R. Kulli and K.M.Niranjan, The semisplitting block graph of a graph, Journal of Scientific Research, 2(3) 485-488 (2010).
[21] V.R.Kulli and D.G.Akka, Traversability and planarity of total block graphs. J. Mathematical and Physical Sciences, 11, 365-375 (1977).
[22] A.Muthaiyan and A. Nesamathi, Some new families of face edge product cordian graphs, International Journal of Mathematics Trends and Technology, Vol.33 no. 2 (5) (2016).
[23] S.Somasundaram, S.S.Sandhya, Some results on Geometric mean graphs, International Journal of Mathematics Trends and Technology, Vol.16 no. 1 (12) (2014).