Fractional order Hirota-Satsuma coupled KdV equation by Homotopy perturbation transforms method

International Journal of Mathematics Trends and Technology (IJMTT)
© 2016 by IJMTT Journal
Volume-33 Number-3
Year of Publication : 2016
Authors : R.N Prajapati, Rakesh Mohan ,Pankaj Kumar


R.N Prajapati, Rakesh Mohan ,Pankaj Kumar "Fractional order Hirota-Satsuma coupled KdV equation by Homotopy perturbation transforms method", International Journal of Mathematics Trends and Technology (IJMTT). V33(3):148-155 May 2016. ISSN:2231-5373. Published by Seventh Sense Research Group.

In this paper, we have used homotopy perturbation method and Laplace transformation to determine approximate solutions which converge to exact solution of generalized Hirota−Satsuma coupled KdV equation. The nonlinear terms handled by the use of He’s polynomial.

[1] J.H. Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineering, 179(1999) 257-262, doi:10.1016/S0045-925(99)00019-3.
[2] J.H. He A Coupling Method of a Homotopy Technique and Perturbation Technique for Non-Linear problems, International Journal of Nonlinear Mechanics, 35(2000) 37-43, doi: 10.1016/S0020-7462(99)00095-7.
[3] J.H.He, Homotopy Perturbation Method: A New Non-Linear Analytical Technique, Applied Mathematics and Computation, 135(2003)73-79,doi:10.1016/S0096- 3003(01)00312-5.
[4] K. Batiha, Approximate Analytical Solutions for Time- Dependent Emden-Fowler-Type Equations by Variational Iteration Method, American Journal of Applied Sciences, 4(2007) 439-443, doi:10.3944/ajassp.2007.439.443.
[5] J. Biazar and H. Ghazvini, He’s Variational Iteration Method for Solving Linear and Non-Linear Systems of Ordinary Differential Equations, Applied Mathematics and Computation, 191(2007) 297-297, doi:10.1016/j.amc.2007.02.153.
[6] Ahmet Yıldırım, Solving Differential-Difference Equation, Mathematical Problems in Engineering, Article ID 869614,7 pages
[7] A. M. Wazwaz, Analytic Treatment for Varcient Fourth-Order Parabolic Partial Differential Equations, Applied Mathematics and Computation, 123(2001) 219-227,doi:10.1016/S0096-3003(00)00070-9.
[8] J. H. He, An Elementary Introduction Perturbation Method, Computers and Mathematics with Applications, 57(2009) 410-412, doi:10.1016/j.camwa.2009.06.003.
[9] Z. M. Odibat, A New Modification of the Homotopy Perturbation Method for Linear and Nonlinear Operators, Applied Mathematics and Computation, 199(2007),746-753, doi:10.1016/j.amc.2006.11.199.
[10] E. Yusufoglu, Improved Homotopy Perturbation Method for Solving Fredholm type Integro-Differential Equations, Chaos Solitons and Fractals, 41(2009) 29-37. doi:10.1016/j.chaos.2007.11.005.
[11] M. A. Jafari and A. Aminataei, “Improved Homotopy Perturbation Method,” International Mathematical Forum, 5(2010) 1567- 1579.
[12] M. Ghasemi, M. T. Kajani and E. Babolian, Application of He’S Homotopy Perturbation Method to Nonlinear In- tegro-Differential Equations, Applied Mathematics and Computation, 199(2007) 539-549, doi:10.1016/j.amc.2006.10.016.
[13] H. Jafari, M. Zabihi and M. Saidy, Application of Homotopy Perturbation Method for Solving Gas Dynamics Equation, Applied Mathematical Sciences, 2(2009) 2393-2396,
[14] Y. Yu and H. Li, Application of the Multistage Homotopy Perturbation Method to Solve a Class of Hypercha- otic Systems, Ghaos Solitons and Fratals, 42(2009) 2330-2337,doi:10.1016/j.chaos.2009.064
[15] P. Roul, Application of Homotopy Perturbation Biological Population Model, Application and Mathematics: An International Journal, 5(2010)13969-1379.
[16] M. Meran, Homotopy Perturbation Method for Solving a Model for HIV Infection of CD4+ Cell, Istanbul Ticaret Universitesi Fen Bilimleri Dergisi, 12(2007) 39-52.
[17] Y. X. Wang, H. Y. Si and L. F. Mo, Homotopy Perturbation Method for Solving Reaction-Diffusion Equations, Mathematical Problem in Engineering, Vol. 2009, and Article ID: 795939. doi:10.1155/2009/795939.
[18] S. Kumar, Y. Khan, A. Yildirim, A mathematical modeling arising in the chemical system and its approximate numerical solution, Asia Pacific J. Chem. Eng. 7(2012) 835–840.
[19] N. Faraz, Y. Khan, Analytical solution of electrically conducted rotating flow of a second grade fluid over a shrinking surface, Ain Shams Eng. J. ,2(2011) 221–226.
[20] S. Kumar, Om P. Singh, Numerical inversion of the Abe integral equation using homotopy, Z. Naturforsch, 65( 2010) 677–682.
[21] S.kumar, A new fractional modeling arising in engineering sciences and its analytical approximate solution, Alexandria Engineering Journal, 52(2013) 813–819.
[22] S. Kumar, H. Kocak, A. Yildirim, A fractional model of Gasdynamics equation and its analytical approximate solution by using Laplace transform, Z. Naturforsch, 67a(2012) 389–396.
[23] S. Kumar, A. Yildirim, Y. Khan, L. Wei, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci. Iran. B, 19(2012) 1117–1123.
[24] K.S. Miller, B. Ross,An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[25] Abbaoui, K., Cherruault, Y.,New ideas for proving convergence of decomposition methods, Computers & Mathematics with Applications, 29(1995) 103–108.
[26] Reza Abazari , Malek Abazari ,Numerical simulation of generalized Hirota–Satsuma coupled KdV equation by RDTM and comparison with DTM, 17(2012) 619–629

Homotopy perturbation method, Laplace transform method, Generalized Hirota-Satsuma Coupled KdV Equation.