Volume 33 | Number 3 | Year 2016 | Article Id. IJMTT-V33P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V33P522
Dr. Maneesha Sakalle, Richa Jain, "Rainbow connection number of Connected Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 33, no. 3, pp. 156-160, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V33P522
[1] D. Dellamonica Jr., C. Magnant and D.M. Martin, Rainbow Paths, Discrete Math. 310(4), 774-781(2010).
[2] E.S. Elmallah and C.J. Colbourn, Series-parallel subgraphs of Planar Graphs, Networks 22(6), 607-614(1992).
[3] G. Chartrand, F. Okamoto and P. Zhang, Rainbow Trees in Graphs and Generalized Connectivity, Networks 55(4),360-367,(2010).
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang , Rainbow Connection in Graphs, Math. Bohem, 133(1), 85-98, (2008).
[5] G. Chartrand, P. Zhang, Introduction to Graph Theory. Macraw-Hill, Boston, (2011). [6] M. Krivelevich, R. Yuster, The Rainbow Connection of a Graph is (atmost) Reciprocal to its Minimum Degree, J. Graph Theory 63(3) , 185- 191, (2009).
[7] M. K. Angel Jebitha Domination Uniform Subdivision Number of Graph, International Journal of Mathematics Trends and Technology-(27),( 2015)
[8] Prabhanjan Ananth, Meghana Nasre and Kanthi K. Sarpatwar, Hardness and Parameterized Algorithms on Rainbow Connectivity Problem, CoRR, abs/1105.0979, (2011).
[9] Rod G. Downey and M.R. Fellows, Parameterized Complexity, Monographs in Computer Science, Springer, (1999).
[10] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and Algorithms for Rainbow Connection, 26th International Symposium on Theoretical Aspects on Computer Science STACS 2009(2009) 243-254. Also, see Journal of Combinatorial Optimization, 21, 330-347(2011).
[11] X. Li, Y. Sun, Rainbow Connections of Graphs-A survey, available at http://arxive.org/abs/1101.5747(2011).
[12] Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster, On Rainbow Connection, The Electronic Journal of Combinatorics, 15(R57): 1, (2008).