Volume 34 | Number 2 | Year 2016 | Article Id. IJMTT-V34P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V34P511
In the present paper we have studied invariant submanifolds of a (k, μ)-contact manifold admitting quarter symmetric metric connection and obtained some interesting results.
[1] B.S. Anitha and C.S. Bagewadi, Invariant submanifolds of Kenmotsu manifolds admitting quarter symmetric metric connection, Bulletin of mathematical analysis and applications, (3) (2012), 99-114.
[2] B.S. Anitha, A study on invariant submanifolds of contact manifolds, Thesis.
[3] Avik De, A note on invariant submanifolds of (k, μ)-contact manifolds, Ukranian Mathematical J., 62(11) (2011), 1803- 1809.
[4] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin, (1976).
[5] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfyng a nullity condition, Israel J. Math., 91 (1995), 189-214.
[6] B.Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, (1981).
[7] J. Deprez, Semiparallel hypersurfaces, Rend. Sem. Mat. Univ. Politechn. Torino 45 (1986), 303-316.
[8] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Belg. Math. Ser. A 44 (1992), 1-34.
[9] A. Friedmann and J.A. Schouten, Uber die geometrie der halbsymmetrischen Ubertragung,, Math. Zeitscr., 21 (1924), 211- 223.
[10] S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor N.S., 29 (1975), 249-254.
[11] H.A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
[12] B.C. Montano, Di Terlizzi and Mukut Mani Tripathi, Invariant submanifolds of contact (k, μ)-manifolds, Glassgow Math. J., 50 (2008), 499-507.
[13] W. Roter, On conformally recurrent Ricci-recurrent manifolds, Colloq Math., 46(1) (1982), 45-57.
[14] M.S. Siddesha and C.S. Bagewadi, On slant submanifolds of -contact manifold, Differential Geometry–Dynamical Systems, 18 (2016), 123-131.
[15] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Mathemat- ical Journal 40, 441 (1988).
[16] M.M. Tripathi, T. Sasahara and J.S. Kim, On invariant submanifolds of contact metric manifolds, Tsukuba J. Math., 29(2) (2005), 495-510.
[17] L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of submanifolds, World Scientific Publishing, River Edge, vol. VI, (1994), 199-209.
[18] K. Yano, On semi-symmetric metric connections, Resv. Roumaine Math. Press Apple., 15 (1970), 1579-1586.
[19] K. Yano and M. Kon, Structures on manifolds, World scientific publishing, (1984).
M.S. Siddesha, C.S. Bagewadi, "Invariant Submanifolds of (k, μ)-Contact Manifold Admitting Quarter Symmetric Metric Connection," International Journal of Mathematics Trends and Technology (IJMTT), vol. 34, no. 2, pp. 48-53, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V34P511