...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 34 | Number 2 | Year 2016 | Article Id. IJMTT-V34P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V34P514

Lagrange’s Interpolation Formula: Representation of Numerical Data by a Polynomial curve


Biswajit Das, Dhritikesh Chakrabarty
Abstract

The interpolation by an idea/method which consists of the representation of numerical data by a suitable polynomial and then to compute the value of the dependent variable from the polynomial corresponding to any given value of the independent variable leads to the necessity of a formula for representing a given set of numerical data on a pair of variables by a suitable polynomial. One such formula has been developed in this study. The formula has been derived from Lagrange’s interpolation formula. The formula obtained has been applied to represent the numerical data, on the total population of India since 1971, by a suitable polynomial.

Keywords
Interpolation, Lagrange’s formula, polynomial curve, representation of numerical data.
References

[1] Bathe K. J. & Wilson E. L. (1976): ―Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ
[2] Quadling D. A. (1966): ―Lagrange's Interpolation Formula, ―The Mathematical Gazette”, L(374), 372—375.
[3] Neale E. P. & Sommerville D. M. Y. (1924): ―A Shortened Interpolation Formula for Certain Types of Data, ―Journal of the American Statistical Association, Jstor, 19(148), 515—517.
[4] Herbert E. Salzer (1962): ― Multi-Point Generalization of Newton'sDivided Difference Formula, ―Proceedings of the American Mathematical Society, Jstor, 13(2), 210—212.
[5] Traub J. F. (1964):―On Lagrange-Hermite Interpolation, ―Journal of the Society for Industrial and Applied Mathematics, Jstor , 12(4), 886—891.
[6] Corliss J.J. (1938): ―Note on an Eatension of Lagrange's Formula, American Mathematical Monthly”, Jstor, 45(2), 106— 107.
[7] Jan K. Wisniewski (1930):― Note on Interpolation, ―Journal of the American Statistical Association”, Jstor 25(170), 203—205.
[8] Mills T. M. (1977) : ―An introduction to analysis by Lagrange Interpolation, ―Austral. Math. Soc. Gaz., 4(1) ,MathSciNet, 10—18.
[9] Hummel P. M. (1947): ―A Note on Interpolation (in Mathematical Notes), ―American Mathematical Monthly, Jstor, 54(4), 218—219.
[10] Erdos P. & Turan P. (1938): ―On Interpolation II: On the Distribution of the Fundamental Points of Lagrange and Hermite Interpolation,―The Annals of Mathematics, 2nd Ser, Jstor, 39(4), 703—724.
[11] Revers & Michael Bull (2000): ―On Lagrange interpolation with equally spaced nodes, ―Austral. Math. Soc MathSciNet., 62(3), 357--368.
[12] Whittaker E. T. & Robinson G. (1967): ―Lagrange's Formula of Interpolation, ―The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed., §17, New York: Dover, 28 30.
[13] Echols W. H. (1893): ―On Some Forms of Lagrange's Interpolation Formula, ―The Annals of Mathematics, Jstor, 8(1/6), 22—24.

Citation :

Biswajit Das, Dhritikesh Chakrabarty, "Lagrange’s Interpolation Formula: Representation of Numerical Data by a Polynomial curve," International Journal of Mathematics Trends and Technology (IJMTT), vol. 34, no. 2, pp. 64-72, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V34P514

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved