Volume 34 | Number 2 | Year 2016 | Article Id. IJMTT-V34P517 | DOI : https://doi.org/10.14445/22315373/IJMTT-V34P517
R. Muthuraj, M. S. Muthuraman, "Intuitionistic Anti-Fuzzy Hx Ring," International Journal of Mathematics Trends and Technology (IJMTT), vol. 34, no. 2, pp. 96-101, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V34P517
[1]. Atanassov.K.T, intuitionistic fuzzy sets,Fuzzy Sets and System 20 (1986) , pp 87-96.
[2]. Bing-xueYao and Yubin-Zhong, Upgrade of algebraic structure of ring, Fuzzy information and Engineering (2009)2: pp 219 - 228.
[3]. Bing-xueYao and Yubin-Zhong, The construction of power ring, Fuzzy information and Engineering (ICFIE), 2007, ASC 40,pp.181-187.
[4]. Dheena.P and Mohanraaj.G, On intuitionistic fuzzy k ideals of semi rings, International Journal of computational cognition, June 2011, Volume 9, No.2,pp.45-50,
[5]. Li Hong Xing, HX group, BUSEFAL, October 1987, 33(4), pp.31-37.
[6]. Li Hong Xing, HX ring, BUSEFAL, January 1988, 34(1), pp.3-8,.
[7]. Liu.W.J., Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems,8, pp. 133- 139.
[8]. Muthuraj.R, Manikandan K.H., Sithar Selvam.P.M., Intuitionistic Q-fuzzy normal HX group ,International Journal of Mathematical Archive , Vol.2, no10., pp 1828-1832.
[9]. Muthuraj.R, Manikandan K.H., Intuitionistic Q-fuzzy HX subgroup and < α,β > level sub HX groups, CIIT International DOI – FS 122011010.
[10]. Muthuraj.R, Ramila Gandhi.N., Induced fuzzy k-ideal and its level k-ideals on a HX ring ,IOSR Journal of Mathematics (IOSR-JM) Volume 9, Issue 6 (Jan 2014) , pp .138-143.
[11]. Rosenfeld. A., Fuzzy groups, J.Math.Anal.,35(1971),512- 517.
[12]. Zadeh.L.A., Fuzzy sets, Information and control,8,338-353