Volume 34 | Number 3 | Year 2016 | Article Id. IJMTT-V34P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V34P521
In this paper we show that in a non-associative 2-and 3-divisible prime assosymmetric ring R satisfying the weak Novikov identity (w,x,yz) = y (w,x,z), the square of every element of R is in the nucleus and then the non-zero idempotent e in R is the identity element of R.1. E Kleinfeid, Proc. Amer Math Soc.8 (1957),983-986. 2. E Kleinfeld and M. Kleinfeld, comm. in Algebra,13 (2), (1985),465-477. 3. E Kleinfeld and H.F. Smith, Nova Journal of Algebra and Geometry. Vol 3, No 1(1994), 73-81. 4. Y Paul, Proceedings of the Symposium on Algebra and Number Theory, Kochi ,Kerala,India,27-29(July 1990 ) ,91-95 5. M. Rich, Trans. Amer. Math. Soc.208 (1975) 81-90.
1. E Kleinfeid, Proc. Amer Math Soc.8 (1957),983-986.
2. E Kleinfeld and M. Kleinfeld, comm. in Algebra,13 (2), (1985),465-477.
3. E Kleinfeld and H.F. Smith, Nova Journal of Algebra and Geometry. Vol 3, No 1(1994), 73-81.
4. Y Paul, Proceedings of the Symposium on Algebra and Number Theory, Kochi ,Kerala,India,27-29(July 1990 ) ,91-95
5. M. Rich, Trans. Amer. Math. Soc.208 (1975) 81-90.
P. Rahira, Dr. G. Ramabhupal Reddy, Dr. K.Suvarna, "Assosymmetric Rings with Weak Novikov Identity," International Journal of Mathematics Trends and Technology (IJMTT), vol. 34, no. 3, pp. 122-125, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V34P521