Volume 35 | Number 1 | Year 2016 | Article Id. IJMTT-V35P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V35P505
Let p, q and l be distinct odd primes and ( )[ ]/( 1) 2 2 n m n m p q p q R GF l x x .If n p o(l) = ( ) n p /2, (n 1) and o(l) (q )/ 2,(m 1) m q m with gcd ( ( ) n p /2, ( ) m q /2) =1, then the explicit expressions for the complete set of 8mn+4n+4m+2 primitive idempotents in the ring ( )[ ]/( 1) 2 2 n m n m p q p q R GF l x x are obtained
[1] S.K.Arora, M.Pruthi, “Minimal Cyclic Codes of prime power length”, Finite Fields Appl.3 (1997)99-113.
[2] S.K. Arora, M. Pruthi, “Minimal Cyclic Codes of length 2pn” Finite Fields Appl. 5 (1999) 177-187.
[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, “Cyclotomic Numbers and Primitive idempotents in the ring GF (l) [x]/< 1 pn x >”, Finite Fields Appl. 10 (2004) 653-673.
[4] G.K.Bakshi, Madhu Raka, “Minimal cyclic codes of length pnq”, Finite Fields Appl. 9 (2003) 432-448.
[5] Ranjeet Singh, M.Pruthi, “Irreducible Quadratic Residue Cyclic Codes of Length 2pnq (n 1)” Antarctica Journal of Mathematics vol.(7) 2010.
Dr. Ranjeet Singh, "Some Results in the Ring," International Journal of Mathematics Trends and Technology (IJMTT), vol. 35, no. 1, pp. 32-37, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V35P505