Volume 35 | Number 3 | Year 2016 | Article Id. IJMTT-V35P523 | DOI : https://doi.org/10.14445/22315373/IJMTT-V35P523
Let p, q and l be distinct odd primes (l is of the type 4k+1and p is of the type 4k+3).
[1] S.K.Arora, M.Pruthi, “Minimal Cyclic Codes of prime power length”, Finite Fields Appl.3 (1997)99 -113.
[2] S.K. Arora, M. Pruthi, “Minimal Cyclic Codes of length 2pn” Finite Fields Appl. 5 (1999) 177-187.
[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, “Cyclotomic Numbers and Primitive idempotents in the ring GF (l) [x]/”, Finite Fields Appl. 10 (2004) 653-673.
[4] G.K.Bakshi, Madhu Raka, “Minimal cyclic codes of length pnq”, Finite Fields Appl.9 (2003) 432-448.
[5] Ranjeet Singh, M.Pruthi, “Irreducible Quadratic Residue Cyclic Codes of Length 2pnq (n 1)” Antarctica Journal of Mathematics vol.(7) 2010.
[6] Ranjeet Singh, M.Pruthi, “Irreducible Quadratic Residue Cyclic Codes of Length pnqm (n≥1)” International Journal of Algebra vol.(7) 2010.
[7] Ranjeet Singh, M.Pruthi, “Irreducible Quadratic Residue Cyclic Codes of Length 2pnqm (n≥1)”.
Monika, Dr. Ranjeet Singh, "Primitive Idempotents of Abelian Codes of Length 4pnqm," International Journal of Mathematics Trends and Technology (IJMTT), vol. 35, no. 3, pp. 168-173, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V35P523