Volume 35 | Number 3 | Year 2016 | Article Id. IJMTT-V35P524 | DOI : https://doi.org/10.14445/22315373/IJMTT-V35P524
We discuss here k-cordial labeling of prism for all odd k. We prove that prisms Pm×Ck , Pm×Ck+1, Pm×Ck+3 are k-cordial for all odd k and m ≥ 2. In addition to this we prove that all the Prisms Pm ×C2k-1 are k-cordial for all odd k, m ≥ 2 and m ≠ tk; t ≥ 1.
[1] L. W. Beineke and S. M. Hegde, Strongly multiplicative graphs, Discuss.Math. Graph Theory,Vol 21,63-75 (2001).
[2] John Clark and Derek Allan Holton, A first look at graph theory, Allied Publications Ltd.
[3] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 18(2015).
[4] M. Hovey, A-cordial graphs, Discrete Math., 93, 183- 194(1991).
[5] M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, J. Egyptian Math. Soc., 7 (1999) 127-135
[6] R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci. Math.Sci., 11, 227-229(1998).
[7] M. Z. Youssef, On k-cordial labeling, Australas. J. Combin., 43, 31-37(2009).
M.V.Modha, K.K.Kanani, "k-cordial labeling of some prisms," International Journal of Mathematics Trends and Technology (IJMTT), vol. 35, no. 3, pp. 174-176, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V35P524