A Note on Convolution and Composite Convolution Operators

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2016 by IJMTT Journal
Volume-36 Number-3
Year of Publication : 2016
Authors : Shallu Sharma
  10.14445/22315373/IJMTT-V36P529

MLA

Shallu Sharma "A Note on Convolution and Composite Convolution Operators", International Journal of Mathematics Trends and Technology (IJMTT). V36(3)212-217 August 2016. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

Abstract
In this note we obtain the condition for convolution and composite convolution operators to be bounded and Hermition .We also find that only the compact composite convolution operator is the Zero operator.

References
1. Kaninska A and Musieelak J : “On convolution operator in Orlicz spaces" Revirta Mathematica de la, Universidad computense de Madrid, Vol 2, 151-158(1989)
2. Komal, B. S and Gupta, D.K “ Normal composition operators.” Acta Sci. Math (Szeged) 47 (1984) 445-448.
3. Komal, B.S and Sharma T.K, “ Composition operators on lp , 0 < p < 1”, Jammu University reviews Vol 1994, 41-48.
4. Kumar. ”Composition operators on L2”, Thesis University of Jammu 1978.
5. Komal B.S, Gupta, Anupama “On Composition Convolution operators with weight ” Int. Journal of Involution and Scientific research ISSN 2315-8014 Vol 23 No. 2 May 2016 PP 303-309.
6. Nortgren, E.A “Composition operators on Hilbers spaces”, Lecture notes ion maths 693 Springer Velag, New York 37-63.
7. Ridge, W.C “Composition operators”, Thesis Indiana University 1969.
8. Singh R.K, Gupta DK and Komal B.S “Some results on Composition Operators on l2”, Int. J. Math and math. Soc. 2(1979), 29-34.
9. Stepanov, V.D:“On convolution Integral operators", Soviet Math Dokal, 19, No. 6, 1978.
10. Stepanov. V.D.“On boundedness and compactness of a class of convolution" soviet Math.Dokal 41, 446-470(1990).
11. Singh R.K and Komal B.S.“Composition operators on p and its adjoint," Proc. Amer.Math.Soc. 70(1978), 21-25.

Keywords
Convolution product, Hermition operator, Bounded and Compact operator.