Volume 37 | Number 1 | Year 2016 | Article Id. IJMTT-V37P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V37P501
Fokrul Alom Mazarbhuiya, "An Efficient Algorithm for Mining Fuzzy Temporal Data," International Journal of Mathematics Trends and Technology (IJMTT), vol. 37, no. 1, pp. 1-5, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V37P501
[1] R. Agrawal, T. Imielinski and A. Swami; Mining association rules between sets of items in large databases; Proceedings of the ACM SIGMOD ’93, Washington, USA (May 1993).
[2] F. A Mazharbhuiya, M. Shenify and Mohammed Husamuddin, Finding Local and Periodic Association Rules from Fuzzy Temporal Data, The 2014 International Conference on Advances in Big Data Analytics July 21-24, 2014, Las Vegas, Nevada, USA.
[3] F. A. Mazarbhuiya (2016); Mining local patterns from fuzzy temporal data, International Journal of Engineering and Applied Sciences (IJEAS), ISSN: 2394-3661, Volume- 1, Issue-1, January 2016, INDIA, pp. 70-73.
[4] J. F. Roddick, M. Spillopoulou; A Biblography of Temporal, Spatial and Spatio-Temporal Data Mining Research; ACM SIGKDD (June 1999).
[5] H. Manilla, H. Toivonen and I. Verkamo; Discovering frequent episodes in sequences; KDD’95; AAAI, 210-215 (August 1995).
[6] J. M. Ale and G.H. Rossi; An approach to discovering temporal association rules; Proceedings of the 2000 ACM symposium on Applied Computing (March 2000).
[7] X. Chen and I. Petrounias; A framework for Temporal Data Mining; Proceedings of the 9th International Conference on Databases and Expert Systems Applications, DEXA ’98, Vienna, Austria. Springer-Verlag, Berlin; Lecture Notes in Computer Science 1460 (1998), 796-805.
[8] X. Chen and I. Petrounias; Language support for Temporal Data Mining; Proceedings of 2nd European Symposium on Principles of Data Mining and Knowledge Discovery, PKDD ’98, Springer Verlag, Berlin (1998), 282-290.
[9] X. Chen, I. Petrounias and H. Healthfield; Discovering temporal Association rules in temporal databases; Proceedings of IADT’98 (International Workshop on Issues and Applications of Database Technology (1998), 312-319.
[10] J. M. Ale, and G. H. Rossi; An Approach to Discovering Temporal Association Rules, In Proc. of 2000 ACM symposium on Applied Computing (2000).
[11] A. K. Mahanta, F. A. Mazarbhuiya and H. K. Baruah; Finding Locally and Periodically Frequent Sets and Periodic Association Rules, Proceeding of 1st Int’l Conf on Pattern Recognition and Machine Intelligence (PreMI’05),LNCS 3776 (2005), 576-582.
[12] F. A. Mazarbhuiya Yusuf Pervaiz (2015); An Efficient Method for Generating Local Association Rules, International Journal of Applied Information Systems (IJAIS), Foundation of Computer Science FCS, New York, USA Volume 9 – No.2, June 2015.
[13] D. Dubois and H. Prade; Ranking fuzzy numbers in the setting of possibility theory, Information Science 30(1983), 183-224.