Volume 37 | Number 2 | Year 2016 | Article Id. IJMTT-V37P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V37P516
In this paper, we derive a key Eulerian integral involving the multivariable I-function defined by Prasad [4], the Aleph-function of one variable,a general class of polynomials of several variables and a generalized multiple-index Mittag-Leffler function. This general Eulerian integral formula is show to provide the key formula from which numerous others results for the multivariable I-function and multivariable H-function.
[1] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[2] J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus.Compt. Rend. de l’Acad. Bulgare des Sci. 64, No 8 (2011), page 1089–1098.
[3] T. R. Prabhakar, A singular integral equation with a generalizedMittag-Leffler function in the kernel.Yokohama Math. J.19(1971), page 7–15.
[4] Y.N. Prasad , Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 ( 1986 ) , page 231-237.
[5] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[6] H.M. Srivastava and Hussain M.A. Fractional integration of the H-function of several variables. Comp. Math. Appl. 30(9), (1995), page 73-85.
[7] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[8] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.
F.Y.Ayant, "Eulerian integral involving the multivariable I-function II," International Journal of Mathematics Trends and Technology (IJMTT), vol. 37, no. 2, pp. 112-119, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V37P516