Combined Effect of Pressure-Dependent
Viscosity and Micropolar Fluids on Squeeze
Film Circular Stepped Plates
Hanumagowda B. N., H. M. Shivakumar, Raju B. T, J. Santhosh Kumar "Combined Effect of Pressure-Dependent Viscosity and Micropolar Fluids on Squeeze Film Circular Stepped Plates", International Journal of Mathematics Trends and Technology (IJMTT). V37(3):175-183 September 2016. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.
Abstract
The theoretical investigations made in this paper
are to study the combined effect of pressure-dependent
viscosity (PDV) and micropolar fluids on squeeze film
circular step plate. The modified Reynolds equations
in both the regions accounting for the pressuredependent
viscosity of micropolar fluids are
mathematically derived. From the analysis, it has been
found that the non dimensional pressure, non
dimensional load carrying capacity, and non
dimensional squeeze film time decreases with
increasing value of non dimensional step distance (K)
and increases as compared with iso-viscous lubricant
case.
References
1. C. Eringen, “Simple micro fluids”, Int. Eng. Sci., Vol. 2, pp
205-217, 1964.
2. A. C. Eringen, “Theory of micropolar fluids”, J. Math. Mech.,
Vol. 16, pp 1-18, 1966.
3. G. Maiti, “Composite and step slider bearings in micropolar
fluids”, Japanese J. Appl. Physics, Vol. 12(7), pp 1058-1064,
1973.
4. J. Prakash and P. Sinha, “Lubrication theory for micropolar
fluids and its application to a journal bearing”, Int. J. Eng Sci,
Vol. 13, pp 217-232, 1975.
5. M. Isa, and K. H. Zaheeruddin, “Micropolar fluid lubrication
of one-dimensional journal bearings”, Wear, Vol. 50, pp 211-
220, 1978.
6. V. K. Agrawal and S. B. Bhatt, “Porous pivoted slider
bearings lubricated with a micropolar fluid”, Wear, Vol. 61
issue 1, pp 1-8, 1980.
7. Prawal Sinha, and Chandan Singh, “The effect of additives
in the lubricant of a
composite bearings with inclined stepped surface”, Wear, Vol.
66, pp 17-26, 1981.
8. J. Prakash and K. Tiwari, “An analysis of the squeeze film
between porous rectangular plates including the surface
roughness effects”, Journal of Mechanical Engineering
Science, Vol. 24, pp 45-49, 1982.
9. N. M. Bujurke, S. G. Bhavi, and P. S. Hiremath, “Squeeze
film lubricated with Micropolar fluids”, Indian natn. Sci. Acad,
Vol. 53, pp 391-398, 1987.
10. M. M. Khonsari, and D. E. Brewe, “On the performance of
finite journal bearings lubricated with micropolar fluids”, Tri.
Trans., Vol. 32, pp 155-160, 1989.
11. T. W. Huang, and C. I. Weng, “Dynamic characteristics of
finite-width journal bearings with micropolar fluids”, Wear,
Vol. 141(1), pp 23-33, 1990.
12. M. M. Khonsari, and D. E. Brewe, “Effect of viscous
dissipation on the lubrication characteristics of micropolar
fluids”, Acta Mechnica, Vol. 105, pp 57-68, 1994.
13. S. Das, S. K. Guha and A. K. Chattopadhyay, “On the
conical whirl instability of
hydrodynamic journal bearing lubricated with micropolar
fluids”, Pro. IMechE Part J: J. Engg. Tribol., Vol. 215, pp 431-
439, 2001.
14. N. B. Naduvinamani, and G. B. Marali, “Dynamic Reynolds
equation for micropolar fluids and the analysis of plane
inclined slider bearings with squeezing effect”, J of Engg.
Tribol., Vol. 221(7), pp 823-829, 2007.
15. N. B. Naduvinamani, and A. Siddanagouda, “Porous
inclined stepped composite
bearings with micropolar fluid”, Tribol. Materals, Surfaces
and interfaces,
Vol. 4, pp 224-232, 2008.
16. N. B. Naduvinamani, and S. Santosh, “Micropolar fluid
squeeze film lubrication of finite porous journal bearing”,
Tribol. International, Vol. 44(4), pp 409-416, 2011.
17. Abdallah A. Elsharkawy, and Khaled J Al-Fadhalah, “A
queeze film characteristics between a sphere and a rough
porous flat plate with micropolar fluids”, Lub.Sci., Vol. 23, pp
1-18, 2011.
18. J. R. Lin, L. J. Liang, and L. M. Chu, “Effects of non-
Newtonian micropolar fluids on the squeeze-film
characteristics between a sphere and a plate surface”, Engg.
Tribol., Vol. 224, pp 825-832, 2010.
19. Syeda Tasneem Fathima, N. B. Naduvinamani. and H. M.
Shivakumar, “Analysed hydromagnetic squeeze film between
porous rectangular plates with couplestress fluids”, Tribology
Online, Vol. 7,4, pp 258-266, 2012.
20. Syeda Tasneem Fathima, N. B. Naduvinamani, H. M.
Shivakumar and B. N. Hanumagowda, “A Study on the
performance of hydromagnetic squeeze film between
anisotropic porous rectangular plates with couplestress fluids”,
Tribology Online, Vol. 9, 1, pp 1-9, 2014.
21. C. Barus, “Isothermal, isopiestics, and isometrics relative to
viscosity”, American Journal of Science, Vol. 45, pp 87-96,
1893.
22. W. J. Bartz, and J. Ether, “Influence of pressure viscosity
oils on pressure, temperature and film thickness in
elastohydrodynamically lubricated rolling contacts”, Proc
IMechE Part C: Mech. Engg. Sci., Vol. 222, pp 1271-1280,
2008.
23. N. B. Naduvinamani, A. Siddanagouda and A. G. Hiremath,
“Effect of surface
roughness and viscosity-pressure dependency on the couple
stress squeeze film characteristics of parallel circular plates”, Advances in Tribol.
Vol. 2014, pp 1-7, 2014.
24. R. F. Lu, and J. R. Lin, “A theoretical study of combined
effects of non-Newtonian
rheology and viscosity-pressure dependence in the sphereplate
squeeze-film system”, Trib. International, Vol. 40, pp
125-131, 2007.
25. N. B. Naduvinamani, and K. K. Archana, “Effect of
viscosity variation on the micropolar fluid squeeze film
lubrication of a short journal bearing”, Advances in Tribol.,
Vol. 2013, pp 1-7, 2013.
26. P. Sinha, S. Chandan and K. R. Prasad, “Viscosity variation
considering cavitation in a journal bearing lubricant containing
additives”, Wear, Vol. 86(1), pp 43-56, 1983.
27. G. Jaya Chandra Reddy, C. Eswara Reddy, and K. Rama
Krishna Prasad, “Effect of viscosity variation on the squeeze
film performance of a narrow hydrodynamic journal bearing
operating with couple stress fluids”, J. of Engg. Tribol., Vol.
222, pp 141-150, 2008.
28. O. Pinkus and B. Sternlicht, “Theory of hydrodynamic
lubrication”, McGraw-Hill,New York, 1961.
Keywords
Squeeze film, Circular stepped plates,
micropolar fluids, pressure-dependent Viscosity.