Volume 38 | Number 3 | Year 2016 | Article Id. IJMTT-V38P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V38P530
For the two bounded adjointable operators T and S with close ranges on Hilbert A-modules, we demonstrate that, T S has closed range if and only if ker(T) + ran(S) be an orthogonal summand. Also, we conclude that T S has closed range if and only if ker(S ∗ ) + ran(T ∗ ) be an orthogonal summand. In addition we investigate the equivalence conditions for close range operators.
[1] S. Baaj and P. Julg, Theorie bivariante de Kasparov et operateurs non bornes dans les C*-modules hilbertiens, C. R. Acad. Sci., Paris, Series I 296(1983), 875-878.
[2] M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3(1999), 215-243.
[3] M. Frank, Self-duality and C*-re exivity of Hilbert C*-modules, Zeitschr. Anal. Anwendungen 9(1990), 165-176.
[4] J. M. Gracia-Bonda and J. C. Varilly and H. Figueroa, Elements of non-commutative geometry, Birkhauser, 2000.
[5] M. Joachim, Unbounded Fredholm operators and K-theory, High-dimensional manifold topology, 177- 199, World Sci. Publishing, River Edge, NJ, (2003).
[6] E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995. [7] G. J. Murphy, C-algebras and Operator Theory, Academic Press, 1990.
[8] I. Raeburn, D. P. Williams, Morita Equivalence and Continuous Trace C-algebras, Math. Surveys and Monogr. v. 60, Amer. Math. Soc., Providence, R.I., 1998.
[9] Kamran Shari, Closedness of the rang of the product of projections in Hilbert modules ,The Journal of Mathematics and Computer Science Vol .2 No.4 (2011) 588-593.
[10] N. E. Wegge-Olsen, K-theory and C*-algebras: a Friendly Approach, Oxford University Press, Oxford, England, 1993.
J. Farokhi-Ostad, M.H. Rezaei-Gol, "Some Properties of Closed Range Operators," International Journal of Mathematics Trends and Technology (IJMTT), vol. 38, no. 3, pp. 172-179, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V38P530