Volume 39 | Number 2 | Year 2016 | Article Id. IJMTT-V39P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P516
In this paper we investigate square divisor cordial labeling, cube divisor cordial labeling and vertex odd divisor cordial labeling of K1,1,n, K2 +mK1, Umbrella, C(t) n , G =< K(1),1,n, K(2) 1;n >, arbitrary supersubdivision of K1;n, the graph obtained by duplication of an edge in K1;n and K2;n u2(K1).
[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, (2015), # DS6.
[2] J. Gross and J. Yellen, Graph Theory and its applications, CRC Press, (1999).
[3] K. K. Kanani and M. I. Bosmiya On Cube Divisor Cordial Graphs, International Journal of Mathematics and Computer Applications Research 5(4) (2015) 117-128.
[4] S. Murugesan, D. Jayaraman, J. Shiama, Square Divisor cordial graphs, International Journal of Computer Applications, 64(22) (2013).
[5] A. Muthaiyan and P. Pugalenthi, Vertex Odd Divisor Cordial Graphs, Asia Pacific Journal of Research, Vol - 1,(2015).
[6] S. K. Vaidya and N. H. Shah, Further Results on Divisor cordial Labeling, Annals of Pure and Applied Mathematics, 4(2) (2013)150-159.
[7] S. K. Vaidya and N. H. Shah, On Square Divisor Cordial Graphs, J. Sci. Res. 6 (3) (2014), 445-455.
[8] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Divisor Cordial Graphs, International J. Math. Combin., 4 (2011) 15-25.
[9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Special Classes of Divisor Cordial Graphs, International Mathematical Forum, 7 (35) (2012) 1737-1749.
[10] R. Sridevi, K. Nagarajan, Fibonacci divisor cordial graphs, International Journal of Mathematics and Soft Computing, 3 (3) (2013) 33 - 39.
G.V. Ghodasara, D.G. Adalja, "Square Divisor Cordial, Cube Divisor Cordial and Vertex Odd Divisor Cordial Labeling of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 2, pp. 118-121, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P516