Volume 39 | Number 2 | Year 2016 | Article Id. IJMTT-V39P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P516
G.V. Ghodasara, D.G. Adalja, "Square Divisor Cordial, Cube Divisor Cordial and Vertex Odd Divisor Cordial Labeling of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 2, pp. 118-121, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P516
In this paper we investigate square divisor cordial labeling, cube divisor cordial labeling and vertex odd divisor cordial labeling of K1,1,n, K2 +mK1, Umbrella, C(t) n , G =< K(1),1,n, K(2) 1;n >, arbitrary supersubdivision of K1;n, the graph obtained by duplication of an edge in K1;n and K2;n u2(K1).
[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, (2015), # DS6.
[2] J. Gross and J. Yellen, Graph Theory and its applications, CRC Press, (1999).
[3] K. K. Kanani and M. I. Bosmiya On Cube Divisor Cordial Graphs, International Journal of Mathematics and Computer Applications Research 5(4) (2015) 117-128.
[4] S. Murugesan, D. Jayaraman, J. Shiama, Square Divisor cordial graphs, International Journal of Computer Applications, 64(22) (2013).
[5] A. Muthaiyan and P. Pugalenthi, Vertex Odd Divisor Cordial Graphs, Asia Pacific Journal of Research, Vol - 1,(2015).
[6] S. K. Vaidya and N. H. Shah, Further Results on Divisor cordial Labeling, Annals of Pure and Applied Mathematics, 4(2) (2013)150-159.
[7] S. K. Vaidya and N. H. Shah, On Square Divisor Cordial Graphs, J. Sci. Res. 6 (3) (2014), 445-455.
[8] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Divisor Cordial Graphs, International J. Math. Combin., 4 (2011) 15-25.
[9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Special Classes of Divisor Cordial Graphs, International Mathematical Forum, 7 (35) (2012) 1737-1749.
[10] R. Sridevi, K. Nagarajan, Fibonacci divisor cordial graphs, International Journal of Mathematics and Soft Computing, 3 (3) (2013) 33 - 39.