Volume 39 | Number 3 | Year 2016 | Article Id. IJMTT-V39P528 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P528
This paper proposes a family of exponential estimators for estimating the finite population variance using auxiliary information in simple random sampling. Expressions for bias, mean squared error and its minimum values have been obtained. The comparisons have been made with the usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78: 117-123, 1983), Kadilar and Cingi (Appl. Math. & Comput., 173, 1047-1059), Upadhyaya and Singh (Vikram Math. J. 19, 14-17, 1999a) and Lone and Tailor (Pak. J. Stat. Oper.res. Vol.XI, No.2, pp 213-220, 2015). An empirical study is carried out to judge the merits of proposed estimator over the traditional estimators.
1. Isaki, C. T. (1983). Variance estimation using auxiliary information. J. Amer. Statist. Assoc. 78, 117-123.
2. Kadilar, C. and Cingi, H. (2006). Ratio estimators for the population in simple and stratified random sampling. Applied Maths. & Comp., 173, 1047-1059.
3. S. Singh (2003). Advanced sampling theory with applications, Kluwer Academic Press.
4.Tailor, R. and Lone, H. A. (2015). A family of estimators for estimating population variance using auxiliary information in sample survey. Pak. J. Stat. Oper. Res. Vol.XI, No.2, pp 213-220.
5. Upadhyaya, L. N. and Singh, H. P. (1999a). An estimator for finite population variance that utilizes the kurtosis of an auxiliary variable in sample survey. Vikram Math. J. 19, 14-17.
6. Singh, R., Chouhan, P., Sawan, N., Smarandache, F., (2009a). Improvement in estimating the population mean using exponential estimator in simple random sampling. Bulletin of Statistics & Economics, Vol.3, A09, 13-18
K.B. Panda, N. Sahoo, "Estimation of Finite Population Variance using Auxiliary Information," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 3, pp. 228-231, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P528