Volume 39 | Number 3 | Year 2016 | Article Id. IJMTT-V39P529 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P529
The I-Function introduced by Saxena [6] is most generalized form of hyper geometric functions including Meijer [4] G-function and Fox [1] H-function. In this paper we have obtained certain new integrals of IFunction. Some special cases of these results have also been worked out. The deviations make use of certain classical functions.
[1] Fox, C. (1961). The G and H-Functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98: 395-429.
[2] Fox, C. (1965). A formal solution of certain Dual Integral equations, Trans. Amer. Math. Soc., 115: 389-396.
[3] Kesarwani, R. N. (1965). A pair of un-symmetrical Fourier Kernel, Trans. Amer. Math. Soc., 115: 356-369.
[4] Meijer, C. S. (1941). Eine neue Erweiterung der Laplace-transformation (Erste Mitielung). Proc. Nededrl, Akad. Wet., Amsterdam, 44: 727-737.
[5] Saxena, R. K and Pogany, T. K. (2010). Mathieu-type series for the function occurring in Fokker-Planck equation. European Journal of pure and Applied Mathematics, 3: 980-988.
[6] Saxena, V. P. (1982). A formal solution of certain new pair of dual integral equations involving H-functions, Proc. Nat. Acad. Sci. India, 52(A)III: 366.
[7] Saxena, V. P. (2008). The I-function, Anamaya Publishers, New Delhi.
[8] Singh, M., Khan, M. A and Khan, A. H. (2014). On some properties of a generalization of Bessel-Maitland function, I. Jour. of Maths trends and Technology, (14)1:
[9] Wright, E. M. (1993). Generalised Bessel function. Jour.London math.Soc.18: 71.
Prachi Jain, Arvind Gupta, V.P. Saxena, "Multiple Integral Involving I-Function and Bessel-Maitland Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 3, pp. 232-237, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P529