Volume 39 | Number 4 | Year 2016 | Article Id. IJMTT-V39P531 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P531
s-g inverse of a given square matrix is defined and its characterizations are obtained. s-hermitian idempotent matrix is defined. Properties of s-g inverse of an s-normal matrix are given.n AMS classifications: 15A09, 15A57.
[1] Weddurburn, J.H.M., Lectures on matrices, colloq. Publ. Amer. Math. Soc. No.17, 1934.
[2] Isarel-Adi Ben and Greville Thomas M E; Generalized inverses: Theory and Applications; A wiley interscience publications Newyork, 1974.
[3] Ann Lee: Secondary symmetric, secondary skew symmetric, secondary orthogonal matrices; Period math. Hungary 7, 63-76, 1976.
[4] S.Krishnamoorthy, R. Vijayakumar, On s-normal matrices, Journal of Analysis and Computation, Vol 2, 2009.
[5] S.Krishnamoorthy, R.Vijayakumar, Some characteristics on s-normal matrices, International Journal of Computational and Applied mathematics, Vol.4, No.1, 49- 53, 2009.
[6] S. Krishnamoorthy, R. Vijayakumar, Some equivalent conditions on s-normal matrices, International Journal of Contemporary Mathematical Sciences, Vol.4, No.29, 1449- 1454, 2009.
R. Vijayakumar, "s-g INVERSE OF s-NORMAL MATRICES," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 4, pp. 240-244, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P531