Volume 3 | Issue 2 | Year 2012 | Article Id. IJMTT-V3I2P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V3I2P501
J. John, V. Mary Gleeta, "The Forcing Monophonic Hull Number of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 3, no. 2, pp. 43-46, 2012. Crossref, https://doi.org/10.14445/22315373/IJMTT-V3I2P501
[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand and Ping Zhang, Convex sets in graphs, Congressess Numerantium 136(1999), pp.19-32.
[3] G. Chartrand and P. Zhang, The forcing hull number of a graph,J. Combin Math. Comput. 36(2001), 81-94.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, (2002) 1-6.
[5] Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139 - 154.
[6] M. G. Evertt, S. B. Seidman, The hull number of a graph, Mathematics, 57 (19850 217-223.
[7] Esamel M. paluga, Sergio R. Canoy, Jr, , Monophonic numbers of the join and Composition of connected graphs, Discrete Mathematics 307 (2007) 1146 - 1154.
[8] M. Faber, R.E. Jamison, convexity in graphs and hypergraphs, SIAM Journal Algebraic Discrete Methods 7(1986) 433-444.
[9] F. Harary, Graph Theory, Addison-Wesley, 1969.
[10] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput Modeling 17(11)(1993) 89-95.
[11] J.John and S.Panchali, The Upper Monophonic number of a graph, International J.Math.Combin 4(2010),46-52.
[12] J.John and V. Mary Gleeta, Monophonic hull sets in graphs (submitted).
[13] Mitre C. Dourado, Fabio protti and Jayme. L. Szwarcfiter, Algorithmic Aspects of Monophonic Convexity, Electronic Notes in Discrete Mathematics 30(2008) 177-182.
[14] L-D. Tong, The forcing hull and forcing geodetic numbers of graphs Discrete Applied Math.157(2009)1159-1163.