Volume 3 | Issue 2 | Year 2012 | Article Id. IJMTT-V3I2P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V3I2P510
An edge magic total labeling of a graph G V E ( , ) with p vertices and q edges is a bijection f from the set of vertices and edges to 1,2,..., p q such that for every edge uv in E, f u f uv f v ( ) ( ) ( ) is a constant k. If t here exist two constants 1 k and 2 k such that the above sum is either 1 k or 2 k , it is said to be an edge bimagic total labeling. A total edge magic (edge bimagic) graph is called a super edge magic (super edge bimagic) if f V G p ( ( )) {1,2,..., } . A total edge magic (edge bimagic) graph is called a superior edge magic (superior edge bimagic) if f E G ( ( )) {1,2,..., q} .In this paper we give magic and bimagic labelings for some class of disconnected graphs
[1] J.A Gallian, “A Dynamic Survey of Graph Labeling” Electronic Journal of Combinatorics, 18, 2011,# DS6.
[2] N. Hartsfield and G. Ringel, “Pearls in Graph Theory”, Academic Press, San Diego,1990.
[3] A. Kotzig and A. Rosa, “Magic valuations of finite graphs”, Canada Math. Bull., Vol. 13, 1970, pp.451-461.
[4] W.D.Wallis, “Magic Graphs”, Birkhauser, 2001.
[5] J. Baskar Babujee, “Bimagic labeling in path graphs”, The Mathematics Education, Volume 38, No. 1, 2004, pp.12-16.
[6] J. Baskar Babujee, “On Edge Bimagic Labeling”, Journal of Combinatorics Information & System Sciences, Vol. 28, No 1-4, 2004, pp.239-244.
[7] J. Baskar Babujee, R.Jagadesh ,”Super edge bimagic labeling for Trees” International Journal of Analyzing methods of Components and Combinatorial Biology in Mathematics,Vol.1 no.2 ,2008,pp.107-116
[8] J. Baskar Babujee, R.Jagadesh ,”Super edge bimagic labeling for Graph with Cycles”, Pacific-Asian Journal of Mathematics, Volume 2, No.1- 2, 2008, pp.113-122.
[9] J. Baskar Babujee, R.Jagadesh ,”Super edge bimagic labeling for Disconnected Graphs”, International Journal of Applied Mathematics & Engineering Sciences, Vol.2,No.2, 2008, pp.171-175.
[10] J. Baskar Babujee, R.Jagadesh ,”Super edge bimagic labeling for for s some class of connected graphs derived from fundamental graphs”, International Journal of Combinatorial Graph Theory and applications,Vol.1,no.2, 2008,pp.85-92.
[11] J.Baskar Babujee, S. Babitha and D.Prathap,” New constructions on Edge antimagic graphs”, Applied Mathematical Sciences, Vol. 6, 2012, no. 44, pp 2149 – 2157.
S.Babitha , A. Amarajothi, J. Baskar Babujee, "Magic and Bimagic Labeling for Disconnected Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 3, no. 2, pp. 86-90, 2012. Crossref, https://doi.org/10.14445/22315373/IJMTT-V3I2P510