Volume 40 | Number 1 | Year 2016 | Article Id. IJMTT-V40P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V40P504
The present paper is evaluated a new Eulerian integral associated with the product of two multivariable I-functions defined by Prasad [1] a generalized Lauricella function , a class of multivariable polynomials and Multivariable I-function defined by Nambisan [2] with general arguments . We will study the case concerning the multivariable H-function defined by Srivastava et al.
[1] Y.N. Prasad , Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 ( 1986 ) , page 231-237.
[2] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol(2014) , 2014 page 1-12.
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
4] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava and R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y Ayant, "Eulerian integral associated with product of two multivariable I-functions, a generalized Lauricella function and a class of polynomials and the multivariable I-function defined by Nambisan I," International Journal of Mathematics Trends and Technology (IJMTT), vol. 40, no. 1, pp. 40-52, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V40P504