References
1. Crane, L. J., (1970), Z. Angew. Math. Phys. 21 645
2. Gupta, P. S., and Gupta, A. S., (1977), Can. J. Chem. Eng. 55 744
3. Banks, W. H. H., (1983), J. Mec. Theor. Appl. 2 375
4. Magyari, E., and Keller, B., (1999), J. Phys. D: Appl. Phys. 32 2876
5. Mahapatra, T. R., and Gupta, A. S., (2003), Can. J. Chem. Eng. 81 258
6. Ahmed M. Megahed, (2013), Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity, Chin. Phys. B Vol. 22, No. 9, 094701, pp.1-6.
7. Sakiadis, B. C., (1961), Boundary layer behaviour on continuous solid surface: I. Boundary layer equations for two dimensional and axisymmetric flow, AIChE J. Vol.7, pp.26–28.
8. Alpher, R. A., (1961), Heat transfer in magnetohydrodynamic flow between parallel plates, Int. J. Heat Mass Transfer, Vol. 3, pp.108–112.
9. Andersson, H. I., and Kumaran, V., (2006), On sheet driven motion of power-law fluids, Int. J. Nonlin. Mech. Vol.41, pp.1228–1234.
10. Bird, R. B., Dai, G. C., and Yarusso, B. J., (1983), The rheology and flow of viscoplastic materials, Rev. Chem. Engng., Vol.1, pp.36–69.
11. Liao, S. J., (2003), Beyond Perturbation: Introduction to the Homotopy Analysis Method,
12. Chapman and Hall, CRC Press, Boca Raton.
13. Liao, S. J., (2003), On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. Fluid Mech. Vol.488, pp.189– 212.
14. Hayat, T., Abbas, Z., and Sajid, M., (2006), Series solution for the upper convected Maxwell fluid over a porous stretching plate, Phys. Lett. A., Vol.358, pp.396– 403.
15. El-Aziz, M. A., (2010), Meccanica 45 97
16. Abdallah, A., (2009), Homotopy Analytical Solution of MHD Fluid Flow and Heat Transfer Problem, Applied Mathematics & Information Sciences, Vol. 3(2), 223-233
17. Bataller, R. C., (2011), Magnetohydrodynamic Flow and Heat Transfer of an Upper-Convected Maxwell Fluid Due to a Stretching Sheet, FDMP, Vol.7, no.2, pp.153- 173.
18. Das, K., (2011), Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference, Int. Jour. Heat Mass Transfer, Vol.54, pp.3505-3513.
19. Ishak, A., (2010), Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect, Meccanica, Vol.45, pp.367-373.
20. Pal, D. and Mondal, H., (2011), The influence of thermal radiation on hydromagnetic Darcy-Forchheimer mixed convection flow past a stretching sheet embedded in a porous medium, Meccanica, Vol.46, pp.739-753.
21. Mukhopadhyay, S., De, P.R., Bhattacharyya, K., and Layek, G.C., (2012), Forced convection flow and heat transfer over a porous plate in a Darcy-Forchheimer porous medium in presence of radiation, Meccanica, Vol.47, pp.153-161.
22. Olajuwon, B.I., and Oahimire, J.I., (2013), Unsteady free convection heat and mass transfer in an mhd micropolar fluid in the presence of thermo diffusion and thermal radiation, International Journal of Pure and Applied Mathematics, Vol. 84, No. 2, pp.15-37.
23. Prabir Kumar Kundu, Kalidas Das, Mr. S.Jana, (2010), mhd micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame, Mathematics Subject Classification. 76W05.
24. Tania S. Khaleque and Samad M.A., (2010), Effects of radiation, heat generation and viscous dissipation on MHD free convection flow along a stretching sheet, Research J of Appl. Sci., Eng. and Tech., Vol. 2, No. 4, pp. 368-377.
25. Moalem, D., (1976), Steady state heat transfer with porous medium with temperature dependent heat generation, Int. J.Heat and Mass Transfer, Vol. 19, No. 529–537.
26. Vajrevelu. K., Nayfeh, J., (1992), Hydro magnetic convection at a cone and a wedge, Int. Comm. Heat Mass Transfer, Vol. 19, pp. 701-710.
27. Elbashbeshy, E. M. A., and Bazid, M. A. A., (2003), Appl. Math. Comp. 138 239
28. Elbashbeshy, E. M. A., and Bazid, M. A. A., (2004), Heat Mass Tran. 41 1
29. Swati Mukhopadhyay, (2012), Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat
Source/Sink, Chin. Phys. Lett., Vol. 29, No. 5, 054703
30. Mahmoud M A A and Megahed A M 2009 Can. J. Phys. 87 1065
31. Megahed A M 2011 Eur. Phys. J. Plus 126 82, 094701- 6
32. Jain, M.K., Iyengar, S.R.K. and Jain, R.K., (1985), Numerical Methods for Scientific and Engineering Computation, Wiley Eastern Ltd., New Delhi, India
33. Abel M S, Tawade J and Nandeppanavar M M 2012 Meccanica 47 385