Volume 41 | Number 1 | Year 2017 | Article Id. IJMTT-V41P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P501
Mahesh Boda, V. Dharmaiah, "Spectral Methods for Volterra Integral Equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 1, pp. 1-8, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P501
[1] B.Guo and L.Wang, Jacobi, Interpolation Approximations and their Applications to Singular Differential Equations, Adv. Comput. Math., 14(2001), 227-276.
[2] C.Canuto, M.Y. Hussaini, A.Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
[3] C.K.Qu, and R.Wong, Szego’s Conjecture on Lebesgue Constants for Legendre Series, Pacific J. Math, 135 (1988), 157 -188.
[4] G.N. Elnagar and M.Kazemi, Chebyshev, Spectral Solution of Nonlinear Volterra-Hammerstein Integral Equations, J.Comput. Appl. Math., 76(1996), 147 -158.
[5] H.Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
[6] H-C. Tian, Spectral-Method for Volterra Integral Equation, MSc Thesis, Simon Fraser University 1995.
[7] H. Fujiwara, High-Accurate Numerical Method for Integral Equations of the First Kind under Multiple-Precision Arithmetic, Preprint, RIMS, Kyoto University, 2006.
[8] H.Brunner , J.P.Kauthen, The Numerical Solution of Two-dimensional Volterra Integral Equation, IMA J.Numer. Anal., 9(1989), 45-59.
[9] H.Brunner and T.Tang. Polynomial Spline Collocation Methods for the Nonlinear Basset Equation, Comput. Math . Appl., 18 (1989), 449-457.
[10] L.M. Delves, J.L. Mohammed, Computational Methods for Integral Equations, Cambridge University Press 1985.