Volume 41 | Number 1 | Year 2017 | Article Id. IJMTT-V41P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P508
The object of this paper is to establish an general Eulerian integral involving the product of the Aleph-function, the multivariable I-function defined by Prasad [1], a general class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular case concerning the multivariable H-function defined by Srivastava et al [8] and the Srivastava-Daoust polynomial [5].
[1] Y.N. Prasad , Multivariable
I-function , Vijnana Parishad Anusandhan Patrika 29 ( 1986 ) , page
231-237.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the
multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Saigo M. and Saxena R.K. Unified fractional integral formulas for the
multivariable H-function III. J.Fractional Calculus 20 (2001), page
45-68.
[4] Sharma C.K.and Ahmad S.S.: On the multivariable I-function. Acta
ciencia Indica Math , 1994 vol 20,no2, p 113- 116.
[5] Srivastava H.M. and Daoust M.C. Certain generalized Neumann
expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch.
Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[6] Srivastava H.M. And Garg M. Some integral involving a general class
of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page
685-692.
[7] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric
series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto ,
1985.
[8] H.M. Srivastava And R.Panda. Some expansion theorems and generating
relations for the H-function of several complex variables. Comment. Math. Univ.
St. Paul. 24(1975), p.119-137.
F.Y. AY ANT, "On general Eulerian integral of certain products of Aleph-function, the multivariable I-function and a class of polynomials I," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 1, pp. 89-102, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P508