Volume 41 | Number 2 | Year 2017 | Article Id. IJMTT-V41P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P512
In the present paper we evaluate the modified Selberg integral involving the product of a multivariable A-function defined by Gautam et al [4], a sequence of functions, the multivariable I-function defined by Nambisan et al [5] and a general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the A-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializating the parameters their in.We will study two particular cases.
[1] Andrew G.G and Askey R. Special function. Cambridge. University. Press 1999.
[2] B. L. J. Braaksma, “Asymptotic expansions and analytic continuations for a class of Barnes integrals,”Compositio Mathematical, vol. 15, pp. 239–341, 1964.
[3] Prathima J. Nambisan V. and Kurumujji S.K. A Study of I-function of Several Complex Variables, International Journalof Engineering Mathematics Vol(2014) , 2014 page 1-12.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[7] H.M. Srivastava, R.K. Saxena, T.K. Pogány, R. Saxena, Integral and computational representations of the extended Hurwitz–Lerch zeta function, Integr.Transf. Spec. Funct. 22 (2011) 487–506.
F.Y. AY ANT, "Selberg integral involving a extension of the Hurwitz-Lerch Zeta function , a class of polynomial and the multivariable I-functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 2, pp. 137-146, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P512