Volume 41 | Number 2 | Year 2017 | Article Id. IJMTT-V41P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P513
The present work deals with temporal stability properties of streaming superposed conducting fluids through porous media under the influence of a uniform normal magnetic field. The considered system is composed of two semi-infinite fluids, a middle fluid sheet of finite thickness through porous media embedded between them. The linear stability criteria of the model discussed analytically and stability diagrams obtained for both the general, and the Rayleigh–Taylor cases. Such configuration displays a variety of fascinating dynamical behaviour, further the stability of this model is of practical significance in many chemical and nuclear engineering applications. The influence of different parameters governing the flow on the stability behaviour of the system discussed in detail.
[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford Univ.Press, Oxford, 1961.
[2] J.R. Melcher, Continuum Electromechanics, MIT Press, Cambridge, MA, 1981.
[3] R.E. Rosensweig, Ferrohydrodynamics, Cambridge Univ. Press, Cambridge,UK, 1985.
[4] R.C. Sharma, T.J.T. Spanos, Can. J. Phys. vol. 60, pp.1391, 1982.
[5] R. Raghaven, S.S.Q. Mardsen, J. Mech. Appl. Math. vol. 26, pp. 205, 1973.
[6] H.H. Bau, Phys. Fluids vol. 25, pp. 1719,1982.
[7] St.I. Gheorghitza, J. Sci. Eng. Res. vol. 13, pp. 39,1969. [8] A. Georgescu, St.I. Gheorghitza, Rev. Roum. Math. Pure Appl. vol. 16, pp. 27,1971.
[9] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in porous media. Kluwer Academic, Dordrecht. 1991.
[10] G.I. Baranblatt, V.M. Entov, and V.M.Ryzhik. Theory of fluid flows through natural rocks. Kluwer Academic, Dordrecht. 1990.
[11] K. Zakaria, M.A.Sirwah, andS.A. Alkharashi, Non-Linear Analysis of Creeping Flow on the Inclined Permeable Substrate Plane Subjected to an Electric Field. International Journal of Non-Linear Mechanics, vol. 47, pp. 577-598, 2012.
[12] P. Kumarand G.J. Singh. Stability of Two Superposed Rivlin-Ericksen Viscoelastic Fluids in the Presence of Suspended Particles. Romanian Journal of Physics. vol. 51, pp. 927-935, 2006.
[13] Khan, A. and Bhatia, P.K., “Stability of Two Superposed Viscoelastic Fluids in a Horizontal Magnetic Field”, Ind. J. Pure and Appl. Maths, vol.32, pp.99-108, 2001.
[14] Y.O. El-Dib, R.T. Matoog, J. Colloid Interface Sci. vol.229, pp. 29, 2000.
[15] Y.O. El-Dib, J. Colloid Interface Sci. vol. 259, pp.309, 2003.
[16] Sunil, R.C. Sharma, R.S. Chandel, On superposed coupledstress fluids in porous medium in hydromagnetics, Z. Naturforsch. vol. 57a, pp.955, 2002.
[17] H.H. Woodson, J.R. Melcher, Electromechanical Dynamics, John Wiley & Sons, 1968.
[18] L.D. Landau, E.M. Lifshitz, Electrohydrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.
[19] P.M. Adler, Porous Media, Butterworth–Heineman, London, 1992.
[20] K. Zakaria, M.A. Sirwah, S. Alkharashi, Instability through porous media of three layers superposed conducting fluids, European Journal of Mechanics B/Fluids vol.28, pp.263, 2009.
Yasser Gamiel, Waheed Zahra, Marwa El-Behairy, "Stability Criteria of Streaming Conducting Fluids through Porous Media under the Influence of a Uniform Normal Magnetic Field," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 2, pp. 147-155, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P513