Volume 41 | Number 2 | Year 2017 | Article Id. IJMTT-V41P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P518
The purpose of this paper is to introduce a new type of spaces called, weakly generalized Urysohn spaces and discussed some of its basic properties. Also, the conditions for a weakly generalized Urysohn space becomes Urysohn space and g-Urysohn space have been analysed.
[1]. K. Balachandran, P. Sundaram and H. Maki, “On generalized continuous maps intopological spaces”, Mem. Fac. Sci. Kochi Univ. Math.12(1991) 5 -13.
[2]. S. Balasubramanian, “On g- Separation axioms”, Asian Journal of current Engg. & Math. 1:1(2012), 9 -14.
[3]. C. Dorsett, “Generalized Urysohn spaces”, Revistacolombiana de mate- Maticas, volxxii, (1988) 149 -160.
[4]. J. Dontchev and M. Ganster, “More on Semi- Urysohnspaces”, Bull. Malaysian Math.Sc. Soc. (second series)25 (2002), 129 – 136.
[5]. N. Levine, “Generalized closed sets in topology”,Rend.Circ.Mat. Palermo, 19(2) (1970),89 - 96.
[6]. N. Nagaveni and P. Sundaram “On weakly generalized continuous maps, weaklygeneralized closed maps andweakly generalized irresolute maps in topological spaces”, Far. East J. Math. Sci. 6(6)(1998), 903-912.
[7]. G. Navalagi, “some more properties of Pre Urysohnspace”, Int. J. Engg. Comp. Sci. andMath.2:1(2011) 43- 47.
[8]. R. Paul and P. Bhattacharyya, “On Pre-Urysohn spaces”,Bull. Malaysian Math. Sci.Soc.(2) 22 (1999), 23 – 34.
[9]. D. A. Rose, “Weak continuity and strongly closed sets”, Int.J. Math. and Math. Sci. 7: 4 (1984) 809 -816.
[10]. S. I. Mahmood and A. M Ebrahem, “S*separationAxioms”, Iraqi. J. Sci.51: 1 (2010) 145-15.
[11]. D. Sheeba and N. Nagaveni, “Study on some topological generalized closed graphs”,(Submitted).
N. Nagaveni, D. Sheeba, "A Weaker Form of Urysohn Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 2, pp. 191-194, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P518