Volume 41 | Number 4 | Year 2017 | Article Id. IJMTT-V41P532 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P532
The object of this paper is to establish an general Eulerian integral involving the product of two multivariable I-functions defined by Prasad [1], a class of multivariable polynomials and a generalized hypergeometric function which provide unification and extension of numerous results. We will study the particular cases concerning the multivariable H-function and the Srivastava-Daoust polynomial.
[1] Y.N. Prasad , Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 ( 1986 ) , page 231-237.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[4] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[5] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[6] Srivastava H.M. and Manocha H.L : A treatise of generating functions. Ellis. Horwood.Series. Mathematics and Applications 1984, page 60.
[7] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y. AY ANT, "On general Eulerian integral of certain products of two multivariable I-functions defined by Prasad and a class of polynomials," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 4, pp. 318-330, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P532