Volume 41 | Number 5 | Year 2017 | Article Id. IJMTT-V41P544 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P544
The object of the present paper is to study on a type of conformal φ −recurrent trans-Sasakian manifolds.
[1] Bhattacharyya and D. Debnath, On some types of quasi Einstein manifolds and generalized quasi Einstein manifolds, Ganita, 2(57)(2006) 185-191.
[2] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., Springer verlag, 509(1976).
[3] D. Debnath, On some type of curvature tensors on a trans-Sasakian manifold satisfying a condition with ξ ε N(k) , Journal of the Tensor Society (JTS), 3(2009) 1-9.
[4] D. Debnath, On some types of trans-Sasakian manifold, Journal of the Tensor Society (JTS), 5(2011) 101-109.
[5] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981) 1-27.
[6] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pura appl., 4(162)(1992) 77-86.
[7] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985) 187-195.
[8] M. Tarafdar, A. Bhattacharyya, and D. Debnath, A type of pseudo projective φ - recurrent trans-Sasakian manifold, Analele Stintfice Ale Universitatii, Al.I. Cuza, Iasi, Tomul LII, S.I, Mathematica, f., 2 (2006) 417-422.
[9] M. Tarafdar and A. Bhattachryya, A special type of trans-Sasakian manifolds, Tensor, 3(64)(2003) 274-281.
[10] M. M. Tripathi and U. C. De, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook. Math J.,2(43)(2003) 247-255.
[11] T. Takahashi, Sasakian φ - symmetric spaces, Tohoku Math. J. 2(29)(1977) 91-113.
[12] U. C. De, A. A. Shaikh, and S. Biswas, On φ - recurrent Sasakian manifolds, Novi Sad J. Math, 2(33)(2003) 43-48.
Abhishek Singh, Sachin Khare, C. K. Mishra, N. B. Singh, "On A Type Of Conformal φ −Recurrent Trans-Sasakian Manifolds," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 5, pp. 437-440, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P544