Volume 42 | Number 1 | Year 2017 | Article Id. IJMTT-V42P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V42P504
In this paper, the authors proved Stability of new type of AQ functional equation of the form g x y z w g x y z w g x y z w g x y z w g x y z w g x y z w g x y z w g x y g x z g x w g y z g y w g z w g x g x g y g y g z g z g w g w g x g x g z g z g w g w in Banach space , Banach Algebra using direct and fixed point methods.
[1] J.Aczel and J.Dhombres,functional Equations in Several Variables,Cambridge univ, press, 1989.
[2] Aoki,on the stability of the linear transformation in banach spaces, J.Math.soc. Japan,2(1950),64-66.
[3] C.Borelli.G.L.Forti,,on a general Hyers-Ulam stability ,Internet J.Math.Math.Sci, 18(1995),229-236.
[4]. I.S.Chang,E,H,Lee,H.M.Kim,On the Hyers-ulam-Rassias stability of a quadratic functional equations,math.Ineq.appl.,6(1)(2003),87-95.,431-436.
[5] S. Czerwik, functional equations and inequalities in several variables, world scientific, river edge, NJ, 2002.
[6] M.Eshaghi Gordji,H.Khodai,solution and sability of generalized mixed type Cubic,Quadraticand Additive functional equation in quasi-Banach spaces arXiv:0812.2939v1 Math FA ,15 Dec 2008.
[7] M.Eshaghi Gordji,N.Ghobadipour,J.M.Rassias,A generlization of the Hyers-Ulam- Rassias stability of approximately additive mappings,J.Math.Anal.Appal.,184(1994)
[8] P.Gavruta, A generation of the Hyers Ulam-Rassias stability of approximately additive mapping, J.Ma th. Anal. Appl. 184, (1994), 431-436.
[9] D.H.Hyers, on the stability of the linear functional equation, proc.nat.Sci.U.S.A., 27 (1941) 222-224.
[10] D.H.Hyers, G.Isac, Th.M.Rassias, satbility of the functional equation in several variables, Birkhauser , Basel ,1998.
[11] K.W.Jun ,H.M.Kim on satbility of an n-dimensional quadratic and additive type functional equation, Math. Ineq.appl. 9(1) (2006),153-165.
[12] S.M.Jung, on the Hypers-Ulam stability of funcitional equation that have the quratic property, J.Math anal. Appl, 222(1998), 126-137.
[13] PI.Kannappan, Quadratic functional equation inner product spaces, results Math, 27, No 3-4,(1995), 368-372.
[14] PI.Kannappan, Functional equations and inequalities with application, Springer monographs in mathematics, 2009.
[15] J.H.Park, intutionistic fuzzy metric spaces, chaos,solitons and Fractols, 22(2004), 1039-1046.
[16] Matina J.Rassias,M.Arunkumar,S.Ramamoorthy, Stability of the Leibnitz additive quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal of concrete & applied mathematics(JCAAM),Vol,No.1-2,(2014),22-46.
[17] J.M.Rassias ,on approximately linear mappings by linear mapping , J.Funct. Anal, 46, (1982) 126-130.
[18] Th.M.Rassias Problem 16; 2, Report of the 27th International Symp.on Functional Equations. Aequations Math., 39 (1998),292-293;309.
[19] J.M.Rassias, on approximately of approximately linear mapping by Linear mappings Bull. Sc.Math , 108, (1984), 445-446.
[20] Th.M.Rassias , on the stability of the linear mapping in Banach spaces Proc. Amer. Math.soc, 72(1978), 297-300.
[21] Th.M.Rassias, P.Semrl, On the behaviour of mappings which do not satisfy Hyers Ulam Stability.Proc.Amer.Math.Soc., 114 (1992),989-993.
[22] Th.M.Rassias, on the stability of the functional equation in banach spaces J.Math Anal.Appl.251,(2000),254-284.
[23] F.Skof, proprietd locali e approssinazione dioperation ,end, sem.Mat.Fis Milano, 53(1983), 113-129.
[24] S.M.Ulam, problems in modern Mathematics, science Editions, Wiley, Newyork, 1964(chapter VI, some questions in analysis 1, stability).
S. Murthy, V. Govindan, M. Sree Shanmuga Velan, "Stability of Additive-Quadratic Functional Equation in Banach Space and Banach Algebra: Using Direct and Fixed Point Methods," International Journal of Mathematics Trends and Technology (IJMTT), vol. 42, no. 1, pp. 25-35, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V42P504