Volume 42 | Number 1 | Year 2017 | Article Id. IJMTT-V42P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V42P507
Biswajit Das, Dhritikesh Chakrabarty, "Inversion of Matrix by Elementary Column Transformation: Representation of Numerical Data by a Polynomial Curve," International Journal of Mathematics Trends and Technology (IJMTT), vol. 42, no. 1, pp. 45-49, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V42P507
1. Abramowitz M (1972) : “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, 9th printing. New York: Dover, p. 880.
2. Bathe K. J. & Wilson E. L. (1976): “Numerical Methods in Finite Element Analysis”, Prentice-Hall, Englewood Cliffs, NJ.
3. Biswajit Das & Dhritikesh Chakrabarty (2016a): “Lagranges Interpolation Formula: Representation of Numerical Data by a Polynomial Curve”, International Journal of Mathematics Trend and Technology (ISSN (online): 2231-5373, ISSN (print): 2349-5758), 34 part-1 (2), 23-31.
4. Biswajit Das & Dhritikesh Chakrabarty (2016b): “Newton’s Divided Difference Interpolation Formula: Representation of Numerical Data by a Polynomial Curve”, International Journal of Mathematics Trend and Technology (ISSN (online): 2231-5373, ISSN (print): 2349-5758), 35 part-1 (3), 26-32.
5. Biswajit Das & Dhritikesh Chakrabarty (2016c): “Newton’s Forward Interpolation Formula: Representation of Numerical Data by a Polynomial Curve”, International Journal of Applied Research (ISSN (online): 2456 - 1452, ISSN (print): 2456 - 1452), 1 (2), 36-41.
6. Biswajit Das & Dhritikesh Chakrabarty (2016d): “Newton’s Backward Interpolation Formula: Representation of Numerical Data by a Polynomial Curve”, International Journal of Statistics and Applied Mathematics (ISSN (online): 2394-5869, ISSN (print): 2394-7500), 2 (10), 513-517.
7. Biswajit Das & Dhritikesh Chakrabarty (2016e): “Matrix Inversion: Representation of Numerical Data by a Polynomial curve”, Aryabhatta Journal of Mathematics & Informatics (ISSN (print): 0975-7139, ISSN (online): 2394-9309), 8(2), 267-276.
8. Biswajit Das & Dhritikesh Chakrabarty (2016f): “Inversion of Matrix by Elementary Transformation: Representation of Numerical Data by a Polynomial Curve”, Journal of Mathematis and System Sciences (ISSN (print): 0975-5454), 12, 27-32.
9. Chutia Chandra & Gogoi Krishna (2013): “NEWTON’S INTERPOLATION FORMULAE IN MS EXCEL WORKSHEET”, “International Journal of Innovative Research in Science Engineering and Technology”, Vol. 2, Issue 12.
10. Chwaiger J. (1994): “On a Characterization of Polynomials by Divided Differences”, “Aequationes Math”, 48, 317-323.
11. C.F. Gerald & P.O. Wheatley (1994): “Applied Numerical Analysis”, fifth ed., Addison-Wesley Pub. Co., MA.
12. Chwaiger J. (1994): “On a Characterization of Polynomials by Divided Differences”, “Aequationes Math”, 48, 317-323.
13. Corliss J. J. (1938): “Note on an Eatension of Lagrange's Formula”, “American Mathematical Monthly”, Jstor, 45(2), 106—107.
14. De Boor C (2003): “A divided difference expansion of a divided difference”, “J. Approx. Theory ”,122 , 10–12.
15. Dokken T & Lyche T (1979): “A divided difference formula for the error in Hermite interpolation” , “ BIT ”, 19, 540–541.
16. David R. Kincard & E. Ward Chaney (1991):” Numerical analysis”, Brooks /Cole, Pacific Grove, CA.
17. Endre S & David Mayers (2003): “An Introduction to Numerical Analysis”, Cambridge, UK.
18. Erdos P. & Turan P. (1938): “On Interpolation II: On the Distribution of the Fundamental Points of Lagrange and Hermite Interpolation”, “The Annals of Mathematics, 2nd Ser”, Jstor, 39(4), 703—724.
19. Echols W. H. (1893): “On Some Forms of Lagrange's Interpolation Formula”, “The Annals of Mathematics”, Jstor, 8(1/6), 22—24.
20. Fred T (1979): “Recurrence Relations for Computing with Modified Divided Differences”, “Mathematics of Computation”, Vol. 33, No. 148, 1265-1271.
21. Floater M (2003): “Error formulas for divided difference expansions and numerical differentiation”, “J. Approx. Theory”, 122, 1–9.
22. Gertrude Blanch (1954): “On Modified Divided Differences”, “Mathematical Tables and Other Aids to Computation”, Vol. 8, No. 45, 1-11.
23. Hummel P. M. (1947): “A Note on Interpolation (in Mathematical Notes)”, “American Mathematical Monthly”, Jstor, 54(4), 218—219.
24. Herbert E. Salzer (1962): “Multi-Point Generalization of Newton's Divided Difference Formula”, “Proceedings of the American Mathematical Society”, Jstor, 13(2), 210—212.
25. Jordan C (1965): “Calculus of Finite Differences”, 3rd ed, New York, Chelsea.
26. Jeffreys H & Jeffreys B.S. (1988) : “Divided Differences” , “ Methods of Mathematical Physics ”, 3rd ed, 260-264
27. Jan K. Wisniewski (1930): “Note on Interpolation (in Notes)”, “Journal of the American Statistical Association”, Jstor 25(170), 203—205.
28. John H. Mathews & Kurtis D.Fink (2004): “Numerical methods using MATLAB”, 4ed, Pearson Education, USA.
29. James B. Scarborough (1996): “Numerical Mathematical Analysis”, 6 Ed, The John Hopkins Press, USA.
30. Kendall E.Atkinson (1989): “An Introduction to Numerical Analysis”, 2 Ed., New York.
31. Lee E.T.Y. (1989): “A Remark on Divided Differences”, “American Mathematical Monthly”, Vol. 96, No 7, 618-622.
32. Mills T. M. (1977): “An introduction to analysis by Lagrange interpolation”, “Austral. Math. Soc. Gaz.”, 4(1), MathSciNet, 10—18.
33. Nasrin Akter Ripa (2010): “Analysis of Newton’s Forward Interpolation Formula”, “International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)”, 12, Volume 1, Issue 4.
34. Neale E. P. & Sommerville D. M. Y. (1924): “A Shortened Interpolation Formula for Certain Types of Data”, “Journal of the American Statistical Association”, Jstor, 19(148), 515—517.
35. Quadling D. A. (1966): “Lagrange's Interpolation Formula”, “The Mathematical Gazette”, L(374), 372—375.
36. Robert J.Schilling & Sandra L. Harries (2000): “Applied Numerical Methods for Engineers”, Brooks /Cole, Pacific Grove, CA.
37. Revers & Michael Bull (2000): “On Lagrange interpolation with equally spaced nodes”, “Austral. Math. Soc MathSciNet.”, 62(3), 357-368.
38. S.C. Chapra & R.P. Canale (2002): “Numerical Methods for Engineers”, third ed., McGraw-Hill, NewYork.
39. S.D. Conte & Carl de Boor (1980): “Elementary Numerical Analysis”, 3 Ed, McGraw-Hill, New York, USA.
40. Traub J. F. (1964): “On Lagrange-Hermite Interpolation”, “Journal of the Society for Industrial and Applied Mathematics”, Jstor , 12(4), 886—891.
41. Vertesi P (1990): “SIAM Journal on Numerical Analysis”, Vol. 27, No. 5, pp. 1322-1331 , Jstor.
42. Whittaker E. T. and Robinson G (1967): “The Gregory-Newton Formula of Interpolation" and "An Alternative Form of the Gregory-Newton Formula", “The Calculus of Observations: A Treatise on Numerical Mathematics”, 4th ed, pp. 10-15.
43. Whittaker E. T. & Robinson G. (1967): “Divided Differences & Theorems on Divided Differences”, “The Calculus of Observations: A Treatise on Numerical Mathematics”,4th ed., New York, 20-24.
44. Wang X & Yang S (2004): “On divided differences of the remainder of polynomial interpolation”, www.math.uga.edu/-mjlai/pub.html.
45. Wang X & Wang H (2003): “Some results on numerical divided difference formulas”, www.math.uga.edu/-mjlai/pub.html.
46. Whittaker E. T. & Robinson G. (1967): “Lagrange's Formula of Interpolation”, “The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed.”, §17, New York: Dover, 28-30.