Volume 42 | Number 2 | Year 2017 | Article Id. IJMTT-V42P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V42P512
The main aim of this paper is to introduce a method, to solve certain class of non-homogenous non-Linear Diophantine equations and investigate various properties using the well-known Euler’s theorem and the theory of congruence. Some of the interesting special cases of our main results have been discussed.
[1] S.A. Arif and F.S.A. Muriefah, On the Diophantine equation〖 x〗^2 + 2^k = y^n, Internat. J. Math. Math. Sci. 20 (1997), 299{304.
[2] S.A. Arif and F.S.A. Muriefah, The Diophantine equation〖 x〗^2 + 3^m = y^n, Internat. J. Math. Math. Sci. 21 (1998), 619{620.
[3] F.S. Abu Muriefah, On the Diophantine equation〖 x〗^2 +5 .2^k=y^n, Demonstratio Mathematica 319/2 (2006), 285{289.
[4] F.S. Abu Muriefah, F. Luca and A. Togbe, On the Diophantine equation 〖 x〗^2 +5^a .〖13〗^b=y^n, Glasgow Math. J 50 (2008), 175{181.
[5] Yann Bugeaud (Strasbourg), On the Diophantine equation〖 x〗^2 − p^m = ±y^n, ACTA ARITHMETICA LXXX.3 (1997)
[6] Melvyn B. Nathanson, Elementry Methods in number theory,USA.
[7] I. N. Cangul, M. Demirci, I. Inam, F. Luca and G. Soydan, on the Diophantine Eqaution〖 x〗^2 x^n +2^a .3^b 〖11〗^c=y^n, Math. Slovaca 63 (2013), 647{659.
[8] H. Godinho, D. Marques and A. Togbe, On the Diophantinex^n equation〖 x〗^2+2^a 5^c 〖17〗^d=y^n Communications in Mathematics 20(2012) 81{88}.
[9] M. Le, On Cohn's conjecture concerning the Diophantine equation 〖 x〗^2 + 2^m = y^n, Arch. Math. Basel 78 (2002), 26{35.
[10] F. Luca, On a Diophantine equation, Bull. Austral. Math. Soc. 61(2000), 241{246. (2000), 241{246.
[11] F. Luca, On the equation〖 x〗^2 + 2^a 3^b = y^n, Int. J. Math. Sci. 29 (2002), 239{244.
[12] F. Luca and A. Togbe, On the Diophantine equation〖 x〗^2 +7 .2^k=y^n, Fibonacci Quart. 54/4 (2007), 322-326.
[13] F. Luca and A. Togbe, On the Diophantine equation〖 x〗^2 +2^a .5^b=y^n, Int. J. Number Th. 4/6 (2008), 973-979.
[14] Leo Moser, Introduction to the Theory of Numbers, March 1, 2004, West Lafayette, Indiana, USA
[15] Lindsay N. Childs, A Concrete Introduction to Higher Algebra, Third edition,USA. [16] I. Pink On the Diophantine equation〖 x〗^2+2^a 3^b 5^c 7^d=y^n , Publ.Math. Debrecen 70/1-2 (2007),149{166.
[17] L. Tao, On the Diophantine equation X^2 + 3^m=Y^n, Integers: Electronic J. Combinatorial Number Theory 8 (2008), 1-7.
[18] L. Tao, On the Diophantine equation x^2 + 5^m=y^n ,Ramanujan J.19 (2009), 325{338.
[19] I. Pink and Zs. R_abai On the Diophantine equation〖 x〗^2 + 5^k 〖17〗^l=y^n, Communications in Mathematics, 19, (2011), 1{9.
[20] G. Soydan, M. Ulas and H. Zhu, on the Diophantine Equation x^2 + 2^a 〖19〗^b=y^n, Indian J. Pure Appl. Math. 43(2012), 251{261.
[21] P. Xiaowei, The Exponential Lebesgue-Nagell Equation x^2+p^2m =y^n, Period. Math. Hungar. 67 (2013), 231-242.
Anteneh Tilahun, G.Venkat Reddy, "Characterizations for solutions of certain classes of Non-linear Diophantine equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 42, no. 2, pp. 78-82, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V42P512