Volume 42 | Number 3 | Year 2017 | Article Id. IJMTT-V42P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V42P521
The present paper is evaluated a new Eulerian integral associated with the product of two multivariable I-functions defined by Prasad [1] a generalized Lauricella function , a classes of multivariable polynomials with general arguments . We will study the case concerning the multivariable H-function defined by Srivastava et al [7] and Srivastava-Daoust polynomial [4].
[1] Y.N. Prasad , Multivariable I-function , Vijnana Parishad Anusandhan Patrika 29 ( 1986 ) , page 231-237.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[4] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[5] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function.
Rev. Roumaine Phys. 32(1987), page 685-692.
[6] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[7] H.M. Srivastava and R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
F.Y. Ayant, "Eulerian integral associated with product of two multivariable Prasad's I-functions and classes of polynomials," International Journal of Mathematics Trends and Technology (IJMTT), vol. 42, no. 3, pp. 188-201, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V42P521