Volume 43 | Number 1 | Year 2017 | Article Id. IJMTT-V43P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P505
Ling XU, "Evolution of geometric properties on solution curve of KdV equation," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 1, pp. 20-27, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P505
[1] T Kato,On the Cauchy problem for the (generalized) Korteweg-de Vries equation,Advances in Mathematics supplementary studies,studies in Applied Math.8, pp.93-128,1989.
[2] T Kato,K.Masuda,Nonlinear Evolution Equations and Analyticity.I,Analyse nonlinéaire,pp.455-467,1986.
[3] ANDERS SJÖBERG,On the Korteweg-de Vries Equation:Existence and Uniqueness,J.Math.Anal.Appl.29, pp.569-579 ,1970.
[4] KENIG C E, PONCE G , VEGA L,Oscillatory integrals and regularity of dispersive ,equations[J].Indiana Univ Math,40(1),pp.33-69,1991.
[5] Jennifer Gorsky,A.Alexandrou Himonas,Well-posedness of KdV with higher ,dispersion.Mathematics and Computers in Simulation 80,pp.173–183,2009.
[6] Junfeng Li,Shaoguang Shi,Local well-posedness for the dispersion generalized periodic KdV equation,J.Math.Anal.Appl.379 ,pp.706-718,2011.
[7] Chulkwang Kwak,Local well-posedness for the fifth-order KdV equations on T,Journal of Differential Equations 260,pp.7683-7737,2016.
[8] Sunghyun Hong, Chulkwang Kwak,Global well-posedness and nonsqueezing propertyfor the higher-order KdV-type flow,J.Math.Anal.Appl.441 pp.140-166,2016.
[9] Heather Hannah, A Alexandrou Himonas , Gerson Petronilho,Gevrey regularity of the periodic gKdV equation,Journal of Differential Equations 250,pp. 2581-2600,2011.
[10] M.E.Gage,Curve shortening makes convex curves circular,Invent. Math. 76, pp.357-364,1984.
[11] Marcos Craizer , Ralph Teixeira,Evolution of an extremum by curvature motion,J.Math.Anal.Appl.293,pp.721-737,2004.
[12] Luc Molinet,F rancis Ribaud,On the Cauchy problem for the generalized Korteweg-de Vries equation,Communications in Partial Differential Equations.28(11-12),pp.2065-2091,2003.