Volume 43 | Number 1 | Year 2017 | Article Id. IJMTT-V43P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P510
The object of the present paper is to obtain a necessary condition for an invariant submanifold of -manifold satisfying the conditions and to be totally geodesic, where are the Ricci tensor, curvature tensor and concircular curvature tensor respectively and is the second fundamental form.
[1] B.S. Anitha and C.S. Bagewadi, Invariant submanifolds of Kenmotsu manifolds admitting semi-symmetric meetric connection-II, Acta Universitatis Apulensis, 36 (2013), 129- 142.
[2] M. Atceken, on Geometry of submanifolds of -- manifolds, International Journal of Mathematics and Mathematical Sciences Volume 2012,Article ID 304647,11 Pages. 62.
[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).
[4] U.C. De and Pradip Majhi, On invariant submanifolds of Kenmotsu manifolds, J. Geom. 106 (2015), 109-122.
[5] Z. Guojing and W. Jianguo, Invariant sub-manifolds and modes of nonlinear autunomous systems, Appl. Math. Mech. 19(7) (1998), 687-693.
[6] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27 (1973), 330-336.
[7] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann., 219 (1976), 277-290. [8] K. Matsumoto, On Lorentzian almost para contact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[9] K. Matsumoto, I. Mihai and R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32(1) (1995), 17-31.
[10] M. Okumura, On contact metric immersion, Kodai Math. Sem. Rep., 20 (1968), 389-409.
[11] C. Ozgur and C. Murathan, On invariant submanifolds of Lorenzian para-Sasakian manifolds, The Arabian J. Sci. Engg., 34, 24 (2009), 177-185.
[12] D.G. Prakasha, On Ricci η-recurrent --manifolds, Acta Universitatis Apulensis, 24 (2010), 449- 461.
[13] A.A. Shaikh, Lorentzian almost paracontact manifolds with a structure of concircular type, Kyungpook Math. J., 43(2)(2003),305-314.
[14] A.A. Shaikh, Some Results on manifolds, Korean Math. Soc., 46 (2009) No.3, pp.449-461.
[15] A.A. Shaikh and K.K. Baishya, On concircular structure spacetimes, Am. J. Appl. Sci., 3(4) (2006), 1790-1794.
[16] A.A. Shaikh and K.K. Baishya, , J. Math. Stat. 1 (2005), 129-132.
[17] A.A. Shaikh and S.K. Hui, , Proceedings of the AIP conference, 1309 (2010), 419-429.
[18] A.A. Shaikh, Y. Matsuyama, and S.K. Hui, On invariant submanifolds of -manifolds, Journal Of the Egyptian Mathematical Society, 24 (2016), 263-269.
[19] M.S. Siddesha and C.S. Bagewadi, Totally geodesic submanifolds of contact manifolds, ISOR Journal of Mathematics Volume 12,(Jul.-Aug.2016),1-6.
[20] M.S. Siddesha and C.S. Bagewadi, On some classes of invariant submanifolds of (k, μ)-contact manifold, Journal of Informatics and Mathematical Sciences (Accepted for publication).
[21] M.S. Siddesha and C.S. Bagewadi, Submanifolds of - contact manifold, CUBO-A Mathematical Journal (Accepted for publication).
[22] G.T. Sreenivasa, Venkatesha and C.S. Bagewadi, Some results on -manifolds, Bull. Math. Anal. Appl., 1(3) (2009), 64-70.
[23] S. Sular and C. Ozgr, On some submanifolds of Kenmotsu manifolds, Chaos, Solitons and Fractals, 42 (2009), 1990- 1995.
[24] L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of submanifolds, World Scientific Publishing, River Edge, vol. VI, (1994), 199-209.
[25] K. Yano and S. Ishihara, Invariant submanifolds of almost contact manifold, Kodai Math. Sem. Rep., 21 (1969), 350- 364.
D. Nirmala, C.S. Bagewadi, "A Note on Invariant Submanifolds of (LCS)n - Manifold," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 1, pp. 63-67, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P510