...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 43 | Number 1 | Year 2017 | Article Id. IJMTT-V43P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P510

A Note on Invariant Submanifolds of (LCS)n - Manifold


D. Nirmala, C.S. Bagewadi
Abstract

The object of the present paper is to obtain a necessary condition for an invariant submanifold of -manifold satisfying the conditions and to be totally geodesic, where are the Ricci tensor, curvature tensor and concircular curvature tensor respectively and is the second fundamental form.

Keywords
invariant submanifold, (LCS)n - manifold, totally geodesic.
References

[1] B.S. Anitha and C.S. Bagewadi, Invariant submanifolds of Kenmotsu manifolds admitting semi-symmetric meetric connection-II, Acta Universitatis Apulensis, 36 (2013), 129- 142.
[2] M. Atceken, on Geometry of submanifolds of -- manifolds, International Journal of Mathematics and Mathematical Sciences Volume 2012,Article ID 304647,11 Pages. 62.
[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math., 509, Springer-Verlag, Berlin (1976).
[4] U.C. De and Pradip Majhi, On invariant submanifolds of Kenmotsu manifolds, J. Geom. 106 (2015), 109-122.
[5] Z. Guojing and W. Jianguo, Invariant sub-manifolds and modes of nonlinear autunomous systems, Appl. Math. Mech. 19(7) (1998), 687-693.
[6] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep., 27 (1973), 330-336.
[7] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann., 219 (1976), 277-290. [8] K. Matsumoto, On Lorentzian almost para contact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[9] K. Matsumoto, I. Mihai and R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32(1) (1995), 17-31.
[10] M. Okumura, On contact metric immersion, Kodai Math. Sem. Rep., 20 (1968), 389-409.
[11] C. Ozgur and C. Murathan, On invariant submanifolds of Lorenzian para-Sasakian manifolds, The Arabian J. Sci. Engg., 34, 24 (2009), 177-185.
[12] D.G. Prakasha, On Ricci η-recurrent --manifolds, Acta Universitatis Apulensis, 24 (2010), 449- 461.
[13] A.A. Shaikh, Lorentzian almost paracontact manifolds with a structure of concircular type, Kyungpook Math. J., 43(2)(2003),305-314.
[14] A.A. Shaikh, Some Results on manifolds, Korean Math. Soc., 46 (2009) No.3, pp.449-461.
[15] A.A. Shaikh and K.K. Baishya, On concircular structure spacetimes, Am. J. Appl. Sci., 3(4) (2006), 1790-1794.
[16] A.A. Shaikh and K.K. Baishya, , J. Math. Stat. 1 (2005), 129-132.
[17] A.A. Shaikh and S.K. Hui, , Proceedings of the AIP conference, 1309 (2010), 419-429.
[18] A.A. Shaikh, Y. Matsuyama, and S.K. Hui, On invariant submanifolds of -manifolds, Journal Of the Egyptian Mathematical Society, 24 (2016), 263-269.
[19] M.S. Siddesha and C.S. Bagewadi, Totally geodesic submanifolds of contact manifolds, ISOR Journal of Mathematics Volume 12,(Jul.-Aug.2016),1-6.
[20] M.S. Siddesha and C.S. Bagewadi, On some classes of invariant submanifolds of (k, μ)-contact manifold, Journal of Informatics and Mathematical Sciences (Accepted for publication).
[21] M.S. Siddesha and C.S. Bagewadi, Submanifolds of - contact manifold, CUBO-A Mathematical Journal (Accepted for publication).
[22] G.T. Sreenivasa, Venkatesha and C.S. Bagewadi, Some results on -manifolds, Bull. Math. Anal. Appl., 1(3) (2009), 64-70.
[23] S. Sular and C. Ozgr, On some submanifolds of Kenmotsu manifolds, Chaos, Solitons and Fractals, 42 (2009), 1990- 1995.
[24] L. Verstraelen, Comments on pseudosymmetry in the sense of Ryszard Deszcz. In: Geometry and Topology of submanifolds, World Scientific Publishing, River Edge, vol. VI, (1994), 199-209.
[25] K. Yano and S. Ishihara, Invariant submanifolds of almost contact manifold, Kodai Math. Sem. Rep., 21 (1969), 350- 364.

Citation :

D. Nirmala, C.S. Bagewadi, "A Note on Invariant Submanifolds of (LCS)n - Manifold," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 1, pp. 63-67, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P510

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved