Volume 43 | Number 2 | Year 2017 | Article Id. IJMTT-V43P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V43P511
In this paper we consider the vibration of nonlinear deformation of elastic shallow shell. This is a parabolic problem of Von-Karman evolution without rotational inertia, in quasistatic form. The aim of this article is to finding a condition verified by the internal and external loads in up to have a uniqueness weak solution. For illustrate our theoretical results we use the method of finite difference known that by alternating direction implicit schemes (ADI).
[1] P.G.Ciarlet and P. Rabier. Les Equations de Von kfarmfan. Lecture Notes in Mathematics; Vol 826. - Berlin, Heidelberg, New York Springer. 1980.
[2] P.G.Ciarlet. Mathematical Elasticity, Volume III. The- ory of Shells. Elsevier science. (2000).
[3] I.Chueshov and I.Lasiecka. Von-Karman evolution, well- posedness and long time dynamics. Springer science New York Dorderecht Heidelberg London. (2010).
[4] S.D.Conte. Numerical solution of vibration problem in two space variables. Pacifc Journal of Mathematics. Vol 7, No 4, 1535-1545, 1957
[5] J.Douglas and H.Rachford. On the numerical solution of heat conduction problems in two and three space vari- ables. Trans. Amer. Math. Soc. (1956), 421-439.
[6] C.Escudero and F.Gazzola and I.Peral, Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian. Journal de Mathematiques Pures et Appliqufees. Volumes 103, Issue 4, (2015) 924-957.
[7] R. Glowinski and O. Pironneau. Numerical methods
for the first biharmonic equation and for the twodimensional stokes problem. SIAM Review, 21:167-
212,1979.
[8] J.L.Lions and E.Magenes. Probl`eme aux limites non homog`enes et applications. Vol 1, Dunod, 1968.
[9] Murli M.Gubta and Ram P.Manohar. Direct solution of
Biharmonic equation using noncoupled approach. Journal of Computational Physics 33,236-248 (1979).
[10] Stuart S. Antman. Theodore Von Karman. A Panorama
of Hungarian Mathematics in the Twentieth Centuray,
pp. 373-382.
[11] T.P.Witelski and M.Bowen, ADI schemes for higherorder nonlinear diffusion equations. Applied Numerical
Mathematics 45 (2003) 331-351.
Jaouad.Oudaani, "Quasi-static Von-Karman evolution and Numerical approach," International Journal of Mathematics Trends and Technology (IJMTT), vol. 43, no. 2, pp. 68-74, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V43P511