Volume 44 | Number 2 | Year 2017 | Article Id. IJMTT-V44P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V44P511
S. Kalaiselvi, R.Jeyamani, "A Review on Global Domination Number of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 44, no. 2, pp. 58-60, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V44P511
[1] E. Sampathkumar, The global domination number of a graph, J. Math. Phys.Sci., 23.
[2] S. K. Vaidya and R. M. Pandit, Some new results on global dominating sets, ISRN Discrete Mathematics,vol. 2012
[3] E.J.Cockayne and S.T.Hedetnimi, Towards a theory of Domination in graphs,networks7.
[4] F.Harary, Graph theory , Addition Wesley, Reading, M.A.
[5] S.T.Hedetniemi and R.Laskar, Connected Domination in Graphs, Graph Theory and Combinatorics,B.Bollabas,Ed. Academic Press, London.
[6] S.T.Hedetniemi, R.Laskar and J.Pfaff, Irredundance in Graphs; A Survey Technical Report, Clemson University.
[7] Bondy J. A. and Murthy, U. S. R., Graph theory with Applications, The Macmillan Press Ltd.
[6] R. C. Brigham, R. D. Dutton,On Neighbourhood Graphs, J. Combin. inform. System Sci, 12.
[8] G. S. Domke, etal., Restrained Domination in Graphs, Discrete Mathematics,203.
[9] T. W. Haynes, S. T. Hedetneimi, P. J. Slater, Fundamentals of Dominations in Graphs Marcel Dekker, New York.
[10] I. H. Naga Raja Rao, S. V. Siva Rama Raju, On Semi-Complete Graphs, International Journal Of Computational Cognition, Vol.7(3).
[11] D. F. Rall, Congr. Numer., 80.
[12] E. Sampathkumar, H. B. Walikar,The connected Domination Number of a Graph, J. Math. Phy. Sci, Vol.13.