Volume 44 | Number 2 | Year 2017 | Article Id. IJMTT-V44P518 | DOI : https://doi.org/10.14445/22315373/IJMTT-V44P518
We prove several Lower bounds on the domination number of simple connected graph. In this paper we prove that (2k+1) γk(T)≥|v|+2k-kn1 for each tree. T=(V,E) with n1 leafs, and we characterize the class of tree that satisfy the equality (2k+1) γk(T)≥|v|+2k-kn1.
1. F.Haray, Graph Theory (Addison Wesley, Reading, Mass, 1969).
2. T.W.Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in Graphs, Marcel Dekker, New York, 1998
3. B.Bollobas and E.J. Cockayne, J.Graph Theory 3(3),241 (1979) http://dx.doi.org/10.1002/jgt.3190030306
4. S. Arumugam and S.Velammal, Taiwanese J.Math 2(2),173 (1998).
5. M.Lemanska, Lower Bound on the domination Number of a graph, Discuss Math Graph Theory 24 (2004), 165- 170.
6. J.Cyman, M.Lemanska and J.Raczek, Lower Bound on the distance k-domination number of a tree, math Slovaca 56(2) (2006), 235-243.
7. A.Henning, Caleb Fast and Franklin Kenter, Lower Bound on the distance domination Number of a Graph.
8. D.F.Rall, Total domination in Categorical Product of graphs. Discuss Math Graph Theory 25 (2005) 35-44.
9. M.Valencia Pabon, Idomantic Partitions of direct product of complete graphs Discrete Math 310 (2010) 1118-1122.
10. B.Bresar, S. Klavzar, D.F.Rall, Dominating direct products of graphs. Discrete Math 307 (2007) 1636-1642.
G.Geetha, A.Praveenkumari, "A Review on Lower Bounds for the Domination Number," International Journal of Mathematics Trends and Technology (IJMTT), vol. 44, no. 2, pp. 89-93, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V44P518