Volume 44 | Number 3 | Year 2017 | Article Id. IJMTT-V44P523 | DOI : https://doi.org/10.14445/22315373/IJMTT-V44P523
Mohit James, Ajit Paul, "Nilpotency in Frattini Subgroups," International Journal of Mathematics Trends and Technology (IJMTT), vol. 44, no. 3, pp. 121-122, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V44P523
[1] G. Kaplan, On T-groups, supersolvable groups, and maximal subgroups, Arch.Math. (Basel) 96 (2011), no. 1, 19-25.
[2] G. Frattini, Intornoallagenerazionedeigruppi di operazioni, Rend. Accad. Lincei 4 (1), 281–285 and 455–456.
[3] F. Menegazzo, Gruppineiqualiognisottogruppo èintersezione di sottogruppimassimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 48 (1970), 559-562.
[4] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z. 63 (1955) 76-96.
[5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter& Co., Berlin,1994.
[6] H.C. Bhatia, A generalized Frattini subgroup of a finite group. Ph.D. thesis, Michigan State University, East Lansing, 1972.
[7] P. Bhattacharya and N.P. Mukherjee, A generalized Frattini subgroup of finite group, International Journal of Math and Mathematical Science Vol.12 No. 2 (1989) 263-266.
[8] V. I. Zenkov, V. S. Monakhov, D. O. Revin, An Analog for the FrattiniFactorizationof Finite Groups, Algebra and Logic, 43:2 (2004), 102–108.