Volume 45 | Number 1 | Year 2017 | Article Id. IJMTT-V45P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V45P508

In this paper we obtained stability results for Picard iteration procedure using Integral type contraction conditions in complete metric space.

[1] A. Branciari , "A fixed point theorem for mappings satisfying a general contractive condition of integral type", Int. J. Math. Math. Sci., no 9,521-536. 1.1, 2002.

[2] A. M. Harder and T. L. Hicks ,"A Stable iteration procedure for nonexpansive mappings", Math. Japonica, vol. 33, pp. 687-692, 1988.

[3] A.M. Harder and T.L. Hicks, "Stability results for fixed point iteration procedures", Math. Japon, 33, pp. 693-706, 1988.

[4] A . Ostrowski, "The round of stability of iterations", ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 47, pp. 77-81, 1967.

[5] A. O. Bosede and B. E. Rhoades, "Stability of Picard and Mann iteration for a general class of functions", Journal of Advanced Mathematical Studies, vol. 3, no. 2, pp. 23–25, 2010.

[6] A. R. Khan , F. Gürsoy and V. Kumar, "Stability and data dependence results for the Jungck Khan iterative scheme",Turk. J. Math., 40, pp. 631-640, 2016.

[7] B. E. Rhoades, "Fixed point theorems and stability results for fixed point iteration procedures", Indian Journal of Pure and Applied Mathematics, vol. 21, no.1, pp. 1–9, 1990.

[8] B. E. Rhoades, "Two fixed point theorems for mappings satisfying a general contractive condition of integral type", Int. J. Math. Sci. 63, pp 4007-4013, 2003.

[9] C.O. Imoru and M.O. Olatinwo, "On the stability of Picard and Mann iteration processes", Carpathian J. Math, 19, pp. 155- 160, 2003.

[10] D. Achour and M. T. Belaib, "Some stability theorems for some iteration processes using contractive condition of integral type", Abstract and Applied Analysis, vol. 3, pp. 108-115, 2011.

[11] D. Dey, A. Ganguly and M. Saha, "Fixed point theorem for under general contractive condition of integral type", Int. J. Math. Math. Sci., no 9, 521-536. 1.1, 2002.

[12] E. Karapinar, P. Shahi and K Tas., "Generalized contractive type mappings of integral type and related fixed point theorems", Journal of Inequalities and Applications, pp.160, 2014.

[13] F. Khojasteh, Z. Goodarzi and A. Razani, "Some fixed point theorems of integral type con-traction in cone metric spaces", Fixed Point Theory and Applications, Vol. 2010, Article ID 189684, 201013 pages.

[14] H. Akewe and G. A. Okeke ,"Stability results for ultistep iteration satisfying a general con-tractive condition of integral type in a norm space", J. of NAMP, Vol. 20, pp. 5-12, 2012.

[15] K. Dogan and V. Karakaya, "On the convergence and stability results for a new general iterative process", Scienti.c world journal. Article ID.852475, pp. 8, 2014.

[16] M. O. Olatinwo, "Some common fixed point theorems for self-mappings satisfying two con-tractive condition of integral type in a uniform space",Cent. Eur. J. Math., inf., 6(2), pp. 335- 341, 2008.

[17] M. O. Olatinwo, "A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration", Revista Colombiana de Matematicas, 42(2), pp. 145- 151, 2008.

[18] M. O. Olatinwo, "Some stability results for Picard and Mann iteration processes using con-tractive condition of integral type", Creative Math. and inf.,19, pp. 57-64, 2010.

[19] M. O. Olatinwo , "On some fixed point theorems and error estimates involving integral type contractive conditions", General Mathematics, Vol 18(2), pp. 47-57, 2010.

[20] M. Olatinwo, O. Owojori and C. Imoru, "Some stability results on Krasnolslseskij and Ishikawa fixed point iteration procedures", Journal of Mathematics and Statistics, 2, pp. 360-362, 2006.

[21] M. O. Osilike, "On stability results for fixed point iteration procedures", Journal of the Nigerian Mathematical Society, vol. 14-15, pp. 17-29, 1996.

[22] M. O. Osilike, "Stability results for the Ishikawa fixed point iteration procedures", Indian Journal of Pure and Applied Mathematics, vol. 26, no 10, pp. 937-945, 1995.

[23] M. Urabe, "Convergence of numerical iteration in solution of equations", J Sci Hirishima Univ Sér A. 19, pp. 479–489, 1956.

[24] P. Vijayaraju, B. E. Rhoades, and R. Mohanraj, "A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type", Int. J. Math. Sci.,15, pp. 2359-2364, 2005.

[25] R. Bhardwaj, "Some common fixed point theorem in metric space using integral type map-pings", IOSR Journal of engineering, Vol. 2, pp:187-190, 2012.

[26] S. B. Nadler Jr., "Multivalued contraction mapping", Pac. J. Math. 30 , 475–488, 1969.

[27] S. Ishikawa, "Fixed Point by a New Iteration Method", Proc. Amer. Math. Soc. 44 , No. 1, 147-150, 1974.

[28] Sh . Rezapour, R. H. Haghi and B. E. Rhoades, "Some results about T-stability and almost T-stability", Fixed Point Theory, vol. 12, no. 1, pp. 179–18, 2011.

[29] S. L. Singh and Bhagwati Prasad, "Some coincidence theorem and stability of iterative procedures", computers and Mathematics with Applications 55, pp. 2512-2520, 2008.

[30] V. Berinde, "On the stability of some fixed point procedures", Bul. ¸Stiint. Univ.Baia Mare, Ser. B, Matematica-Informatica, 18, No1, 7-14, 2002.

[31] V. Berinde, "Iterative approximation of fixed points", Second edition, Springer-Verlag Berlin Heidelberg, New York, 2007.

[32] W. R. Mann, "Mean Value Methods in Iteration", Proc. Amer. Math. Soc. 44, 506-510, 1953.

Anil Rajput, Abha Tenguria, Anjali Ojha, "Stability Results for Iteration Procedures using Integral Type Contraction Conditions," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 45, no. 1, pp. 47-52, 2017. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V45P508